2025届陕西省定边县联考九上数学开学考试模拟试题【含答案】_第1页
2025届陕西省定边县联考九上数学开学考试模拟试题【含答案】_第2页
2025届陕西省定边县联考九上数学开学考试模拟试题【含答案】_第3页
2025届陕西省定边县联考九上数学开学考试模拟试题【含答案】_第4页
2025届陕西省定边县联考九上数学开学考试模拟试题【含答案】_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页2025届陕西省定边县联考九上数学开学考试模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图所示,在平行四边形中,对角线相交于点,,,,则平行四边形的周长为()A. B.C. D.2、(4分)一个直角三角形斜边上的中线为5,斜边上的高为4,则此三角形的面积为()A.25 B.16 C.20 D.103、(4分)正方形具有而菱形不一定具有的性质是()A.对角线互相垂直 B.对角线相等 C.对角线互相平分 D.对角相等4、(4分)若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程可能是()A.x2-3x+2=0 B.x2+3x+2=0 C.x2+3x-2=0 D.x2-2x+3=05、(4分)已知四边形ABCD中,AB∥CD,对角线AC与BD交于点O,下列条件中不能用作判定该四边形是平行四边形条件的是()A.AB=CD B.AC=BD C.AD∥BC D.OA=OC6、(4分)在Rt△ABC中,∠C=90°,AC=3,BC=4,则AB的长为()A.3 B.4 C.5 D.67、(4分)如图,点P是∠AOB的角平分线上一点,过点P作PC⊥OA于点C,且PC=3,则点P到OB的距离为()A.3 B.4 C.5 D.68、(4分)如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的周长是()A.20 B.24 C.40 D.48二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,点A、B、C、D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,且抛物线的解析式为,则半圆圆心M的坐标为______.10、(4分)已知菱形的两条对角线长分别为1和4,则菱形的面积为______.11、(4分)若一次函数的函数值随的增大而增大,则的取值范围是_____.12、(4分)甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示。下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是___(填序号).13、(4分)若平行四边形中两个内角的度数比为1:2,则其中一个较小的内角的度数是________°.三、解答题(本大题共5个小题,共48分)14、(12分)在所给的网格中,每个小正方形的网格边长都为1,按要求画出四边形,使它的四个顶点都在小正方形的顶点上.(1)在网格1中画出面积为20的菱形(非正方形);(2)在网格2中画出以线段为对角线、面积是24的矩形;直接写出矩形的周长.15、(8分)计算:+--16、(8分)如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是_____米(平面镜的厚度忽略不计).17、(10分)一条笔直跑道上的A,B两处相距500米,甲从A处,乙从B处,两人同时相向匀速而跑,直到乙到达A处时停止,且甲的速度比乙大.甲、乙到A处的距离(米)与跑动时间(秒)的函数关系如图14所示.(1)若点M的坐标(100,0),求乙从B处跑到A处的过程中与的函数解析式;(2)若两人之间的距离不超过200米的时间持续了40秒.①当时,两人相距200米,请在图14中画出P(,0).保留画图痕迹,并写出画图步骤;②请判断起跑后分钟,两人之间的距离能否超过420米,并说明理由.18、(10分)直线是同一平面内的一组平行线.(1)如图1.正方形的4个顶点都在这些平行线上,若四条直线中相邻两条之间的距离都是1,其中点,点分别在直线和上,求正方形的面积;(2)如图2,正方形的4个顶点分别在四条平行线上,若四条直线中相邻两条之间的距离依次为.①求证:;②设正方形的面积为,求证.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)已知矩形ABCD,给出三个关系式:①AB=BC;②AC=BD;③AC⊥BD,如果选择关系式__________作为条件(写出一个即可),那么可以判定矩形为正方形,理由是_______________________________.20、(4分)如果关于x的方程有实数根,则m的取值范围是_______________.21、(4分)如图,在平面直角坐标系中,菱形ABCD的顶点A在x轴负半轴上,顶点B在x轴正半轴上.若抛物线p=ax2-10ax+8(a>0)经过点C、D,则点B的坐标为________.22、(4分)如图,矩形纸片中,已知,,点在边上,沿折叠纸片,使点落在点处,连结,当为直角三角形时,的长为______.23、(4分)如果正比例函数y=kx的图象经过点(1,-2),那么k的值等于▲.二、解答题(本大题共3个小题,共30分)24、(8分)平面直角坐标系中,设一次函数的图象是直线.(1)如果把向下平移个单位后得到直线,求的值;(2)当直线过点和点时,且,求的取值范围;(3)若坐标平面内有点,不论取何值,点均不在直线上,求所需满足的条件.25、(10分)如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?26、(12分)已知(如图),点分别在边上,且四边形是菱形(1)请使用直尺与圆规,分别确定点的具体位置(不写作法,保留画图痕迹);(2)如果,点在边上,且满足,求四边形的面积;(3)当时,求的值。

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】

由▱ABCD的对角线AC,BD相交于点O,AE=EB,易得DE是△ABC的中位线,即可求得BC的长,继而求得答案.【详解】∵▱ABCD的对角线AC,BD相交于点O,

∴OA=OC,AD=BC,AB=CD=5,

∵AE=EB,OE=3,

∴BC=2OE=6,

∴▱ABCD的周长=2×(AB+BC)=1.

故选:D.此题考查了平行四边形的性质以及三角形中位线的性质.注意证得DE是△ABC的中位线是关键.2、C【解析】

根据直角三角形的性质可得出斜边的长,进而根据三角形的面积公式求出此三角形的面积.【详解】解:根据直角三角形斜边上的中线等于斜边的一半知:此三角形的斜边长为5×2=10;

所以此三角形的面积为:×10×4=1.故选:C.本题考查直角三角形的性质以及三角形的面积计算方法.掌握直角三角形中,斜边上的中线等于斜边的一半是解题的关键.3、B【解析】

根据正方形的性质以及菱形的性质逐项进行分析即可得答案.【详解】菱形的性质有①菱形的对边互相平行,且四条边都相等,②菱形的对角相等,邻角互补,③菱形的对角线分别平分且垂直,并且每条对角线平分一组对角;正方形具有而菱形不一定具有的性质是矩形的特殊性质(①矩形的四个角都是直角,②矩形的对角线相等),A.菱形和正方形的对角线都互相垂直,故本选项错误;B.菱形的对角线不一定相等,正方形的对角线一定相等,故本选项正确;C.菱形和正方形的对角线互相平分,故本选项错误;D.菱形和正方形的对角都相等,故本选项错误,故选B.本题考查了正方形与菱形的性质,解题的关键是熟记正方形与菱形的性质定理.4、A【解析】

先计算出x1+x2=3,x1x2=2,然后根据根与系数的关系得到满足条件的方程可为x2-3x+2=1.【详解】解:∵x1=1,x2=2,

∴x1+x2=3,x1x2=2,

∴以x1,x2为根的一元二次方程可为x2-3x+2=1.

故选A.本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=1(a≠1)的两根时,x1+x2=−,x1x2=.5、B【解析】A.AB=CD,一组对边平行且相等的四边形是平行四边形;B.AC=BD,一组对边平行,另一组对边相等的四边形不一定是平行四边形,也可能是等腰梯形;C.AD∥BC,两组对边分别平行的四边形是平行四边形;D.OA=OC,通过证明两个三角形全等,得出AB=CD,可以得出平行四边形.故选B.6、C【解析】∠C=90°,AC=3,BC=4,,所以AB=5.故选C.7、A【解析】

过点P作PD⊥OB于D,根据角平分线上的点到角的两边距离相等可得PC=PD,从而得解.【详解】解:如图,过点P作PD⊥OB于D,

∵点P是∠AOB的角平分线上一点,PC⊥OA,∴PC=PD=1,即点P到OB的距离等于1.故选:A.本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.8、A【解析】分析:由菱形对角线的性质,相互垂直平分即可得出菱形的边长,菱形四边相等即可得出周长.详解:由菱形对角线性质知,AO=AC=3,BO=BD=4,且AO⊥BO,则AB==5,故这个菱形的周长L=4AB=1.故选A.点睛:本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键,难度一般.二、填空题(本大题共5个小题,每小题4分,共20分)9、(1,0).【解析】

当y=0时,,解得:x1=﹣1,x2=3,故A(﹣1,0),B(3,0),则AB的中点为:(1,0).故答案为(1,0).10、1【解析】

利用菱形的面积等于对角线乘积的一半求解.【详解】解:菱形的面积=×1×4=1.

故答案为1.本题考查了菱形的性质:熟练掌握菱形的性质(菱形具有平行四边形的一切性质;

菱形的四条边都相等;

菱形的两条对角线互相垂直,并且每一条对角线平分一组对角).

记住菱形面积=ab(a、b是两条对角线的长度).11、k>2【解析】

试题分析:本题主要考查一次函数的性质,掌握一次函数的性质是解题的关键,即在y=kx+b中,当k>0时y随x的增大而增大,当k<0时y随x的增大而减小.【详解】根据题意可得:k-2>0,解得:k>2.考点:一次函数的性质;一次函数的定义12、①②③.【解析】

根据甲步行720米,需要9分钟,进而得出甲的运动速度,利用图形得出乙的运动时间以及运动距离,进而分别判断得出答案.【详解】由图象得出甲步行720米,需要9分钟,所以甲的运动速度为:720÷9=80(m/分),当第15分钟时,乙运动15−9=6(分钟),运动距离为:15×80=1200(m),∴乙的运动速度为:1200÷6=200(m/分),∴200÷80=2.5,(故②正确);当第19分钟以后两人之间距离越来越近,说明乙已经到达终点,则乙先到达青少年宫,(故①正确);此时乙运动19−9=10(分钟),运动总距离为:10×200=2000(m),∴甲运动时间为:2000÷80=25(分钟),故a的值为25,(故④错误);∵甲19分钟运动距离为:19×80=1520(m),∴b=2000−1520=480,(故③正确).故正确的有:①②③.故答案为:①②③.此题考查一次函数的应用,解题关键在于结合函数图象进行解答.13、60°【解析】

根据平行四边形的性质得出,推出,根据,求出即可.【详解】四边形是平行四边形,,,,.故答案为:.本题考查了平行线的性质和平行四边形的性质的应用,能熟练地运用性质进行计算是解此题的关键,题目比较典型,难度不大.三、解答题(本大题共5个小题,共48分)14、(1)见解析;(2)【解析】

(1)根据边长为5,高为4的菱形面积为20作图即可;(2)边长为和的矩形对角线AC长为,面积为24,据此作图即可.【详解】解:(1)如图1所示,菱形即为所求;(2)如图2所示,矩形即为所求.∵,∴矩形的周长为.故答案为:.本题考查的知识点是菱形的性质以及作图,根据题意计算得出菱形的边长和矩形的边长是解此题的关键.15、2+3【解析】

根据二次根式的运算法则即可求出答案.【详解】原式=4+3﹣﹣=2+3本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算,本题属于基础题型.16、1【解析】试题分析:由题意知:光线AP与光线PC,∠APB=∠CPD,∴Rt△ABP∽Rt△CDP,∴,∴CD==1(米).故答案为1.考点:相似三角形的应用.17、(1);(2)①见解析;②起跑后分钟,两人之间的距离不能超过米,理由见解析.【解析】

(1)设乙从B处跑到A处的过程中y与x的函数关系式为y=kx+b,把(0,10)和(100,0)代入求出k,b的值即可,(2)①设,两直线相交于点.过点作轴的垂线,交直线于点,在射线上截取,使过点作轴的垂线,则垂足即为所求点.②由两人有相距200到相遇用时1秒,由a>b,,起跑后分钟(即秒),两人处于相遇过后,但乙未到达处,则计算乙在90秒内离开B距离比较即可.【详解】(1)设把分别代入,可求得∴解析式为(2)如图:设,两直线相交于点.步骤为:.①过点作轴的垂线,交直线于点②在射线上截取,使③过点作轴的垂线,则垂足即为所求点.(3)起跑后分钟,两人之间的距离不能超过米.理由如下:由题可设∵两人之间的距离不超过米的时间持续了秒,∴可设当或时,两人相距为米.∴相遇前,当时,,即也即①.相遇后,当时,即也即②.把①代入②,可得解得当两人相遇时,,即即,解得x=1.∵甲的速度比乙大,所以,可得∴起跑后分钟(即秒),两人处于相遇过后,但乙未到达处.∴两人相距为∵,∴两人之间的距离不能超过米.本题为一次函数图象问题,考查了一次函数图象性质、方程和不等式有关知识,解答关键是根据条件构造方程或不等式解决问题.18、(1)9或5;(2)①见解析,②见解析【解析】

(1)分两种情况:①如图1-1,得出正方形ABCD的边长为2,求出正方形ABCD的面积为9;②如图1-2,过点B作EF⊥l1于E,交l4于F,则EF⊥l4,证明△ABE≌△BCF(AAS),得出AE=BF=2由勾股定理求出AB=,即可得出答案;(2)①过点B作EF⊥l1于E,交l4于F,作DM⊥l4于M,证明△ABE≌△BCF(AAS),得出AE=BF,同理△CDM≌△BCF(AAS),得出△ABE≌△CDM(AAS),得出BE=DM即可;②由①得出AE=BF=h2+h2=h2+h1,得出正方形ABCD的面积S=AB2=AE2+BE2,即可得到答案.【详解】解:(1)①如图,当点分别在上时,面积为:;②如图,当点分别在上时,过点B作EF⊥l1于E,交l4于F,则EF⊥l4,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∴∠ABE+∠CBF=180°-90°=90°,∵∠CBF+∠BCF=90°,∴∠ABE=∠BCF,在△ABE和△BCF中,∴△ABE≌△BCF(AAS),∴AE=BF=2,∴AB=,∴正方形ABCD的面积=AB2=5;综上所述,正方形ABCD的面积为9或5;(2)①证明:过点B作EF⊥l1于E,交l4于F,作DM⊥l4于M,如图所示:则EF⊥l4,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∴∠ABE+∠CBF=180°-90°=90°,∵∠CBF+∠BCF=90°,∴∠ABE=∠BCF,在△ABE和△BCF中,,

∴△ABE≌△BCF(AAS),∴AE=BF,同理△CDM≌△BCF(AAS),∴△ABE≌△CDM(AAS),∴BE=DM,即h1=h2.②解:由①得:AE=BF=h2+h2=h2+h1,∵正方形ABCD的面积:S=AB2=AE2+BE2,∴S=(h2+h1)2+h12=2h12+2h1h2+h3.本题考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识;熟练掌握正方形的性质,证明三角形全等是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、①一组邻边相等的矩形是正方形【解析】

根据正方形的判定定理添加一个条件使得矩形是菱形即可.【详解】解:∵四边形ABCD是矩形,AB=BC,∴矩形ABCD为正方形(一组邻边相等的矩形是正方形).故答案为:①,一组邻边相等的矩形是正方形.本题考查了正方形的判定定理,熟练掌握正方形的判定定理即可得到结论.20、【解析】分析:根据方程的系数结合根的判别式,即可得出△=16-8m≥0,解之即可得出m的取值范围.详解:∵关于x的方程有实数根,

∴△=(-4)²-4×2m=16-8m≥0,

解得:m≤2

故答案为:m≤2点睛:本题考查了根的判别式,根的判别式大于0,方程有两个不相等的实数根;根的判别式等于0,方程有两个相等的实数根;根的判别式小于0,方程没有实数根.21、(4,0)【解析】

根据抛物线p=ax2−10ax+8(a>0)经过点C、D和二次函数图象具有对称性,可以求得该抛物线顶点的横坐标和CD的长,然后根据菱形的性质和勾股定理可以求得AO的长,从而可以求得OB的长,进而写出点B的坐标.【详解】解:∵抛物线p=ax2−10ax+8=a(x−5)2−25a+8,∴该抛物线的顶点的横坐标是x=5,当x=0时,y=8,∴点D的坐标为:(0,8),∴OD=8,∵抛物线p=ax2−10ax+8(a>0)经过点C、D,CD∥AB∥x轴,∴CD=5×2=10,∴AD=10,∵∠AOD=90°,OD=8,AD=10,∴AO=,∵AB=10,∴OB=10−AO=10−6=4,∴点B的坐标为(4,0),故答案为:(4,0)本题考查二次函数的性质、二次函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.22、3或【解析】

分两种情况:①当∠EFC=90°,先判断出点F在对角线AC上,利用勾股定理求出AC,设BE=x,表示出CE,根据翻折变换的性质得到AF=AB,EF=BE,再根据Rt△CEF利用勾股定理列式求解;②当∠CEF=90°,判断四边形ABEF是正方形,根据正方形的性质即可求解.【详解】分两种情况:①当∠EFC=90°,如图1,∵∠AFE=∠B=90°,∠EFC=90°,∴点A、F、C共线,∵矩形ABCD的边AD=4,∴BC=AD=4,在Rt△ABC中,AC=设BE=x,则CE=BC-BE=4-x,由翻折的性质得AF=AB=3,EF=BE=x,∴CF=AC-AF=5-3=2在Rt△CEF中,EF2+CF2=CE2,即x2+22=(4-x)2,解得x=;②当∠CEF=90°,如图2由翻折的性质可知∠AEB=∠AEF=45°,∴四边形ABEF是正方形,∴BE=AB=3,故BE的长为3或此题主要考查矩形的折叠问题,解题的关键是根据图形进行分类讨论.23、-2【解析】将(1,-2)代入y=kx得,—2=1×k,解得k=-2二、解答题(本大题共3个小题,共30分)24、(1);(2)且;(3)【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论