特训09期中解答题(题型归纳33题第7-9章)(原卷版)_第1页
特训09期中解答题(题型归纳33题第7-9章)(原卷版)_第2页
特训09期中解答题(题型归纳33题第7-9章)(原卷版)_第3页
特训09期中解答题(题型归纳33题第7-9章)(原卷版)_第4页
特训09期中解答题(题型归纳33题第7-9章)(原卷版)_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

特训09期中解答题(题型归纳33题,第79章)一、解答题1.计算:(1);(2).2.计算(1)(2)(3);(4)3.计算:(1)(2)4.把下列各式分解因式:(1);(2)x(x﹣1)﹣3x+4;(3);(4).5.因式分解:(1)(2)(3)(4)6.(1)先化简,再求值:,其中,.(2)已知,求的值.7.计算:(1);(2);(3);(4).(5)先化简再求值:其中8.算一算:(1);(2);(3);(4)已知,求的值;(5)已知,求x的值.9.运用整式乘法公式先化简,再求值.其中,a=-2,b=1.10.已知化简的结果中不含项和项.(1)求,的值;(2)若是一个完全平方式,求的值.11.例:已知,求的值.解:因为,所以,则,所以.观察以上解答,解答以下问题:已知,求下列各式的值.(1);(2).12.在比较和的大小时,我们可以这样来处理:∵==,==,16<27,∴<,即<.请比较以下两组数的大小:(1)与;(2)与.13.阅读材料:若,求的值.解:根据你的观察,探究下面的问题:(1),则,.(2)已知,求的值.(3)已知的三边长都是正整数,且满足,求的周长.14.阅读下列解答过程:已知二次三项式有一个因式是,求另一个因式及m的值.解:设另一个因式为则,,∴,∴∴另一个因式为,m的值为21.请依照以上方法解答下面问题:已知二次三项式有一个因式是,求另一个因式及k的值.15.如图,边长为a的大正方形有一个边长为b的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示)(1)上述操作能验迁的等式是(请选择正确的选项)A.aab=a(ab)

B.a2ab+b=(ab)

C.a+ab=a(a+b)

D.ab=(a+b)(ab)(2)请利用你从(1)选出的等式,完成下列各题:①已知9ab=36,3a+b=9则3ab=②计算:16.已知对于任意实数x代数式的最小值是0,代数式,当时的最小值是0.(1)求代数式的值是最小值时x的值.(2)判断代数式的值是有最大值,还是最小值,并求出代数式的最大值或者最小值17.如图1是长为,宽为的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2).(1)你认为图2中阴影部分的正方形的边长等于多少?________.(2)观察图2,请你写出、、之间的等量关系是________;(3)若,,求的值;(4)拓展应用:若,求的值.18.观察下列各式:;;;.(1)根据上面各式的规律可得______.(2)根据上面各式的规律可得:______.(3)若,求的值.19.你能化简吗?我们不妨先从简单情况入手,发现规律,归纳结论.探究发现:先填空:______;______;______;…由此猜想:______.拓展应用:利用这个结论,你能解决下面两个问题吗?①求的值;②若,求等于多少?20.数学中,常对同一个量(图形的面积、点的个数、三角形的内角和等)用两种不同的方法计算,从而建立相等关系,我们把这一思想称为“算两次”.“算两次”也称做富比尼原理,是一种重要的数学方法.(1)在学习乘法公式时,我们通过对图1的面积“算两次”得到.请设计一个图形说明成立;(画出示意图,并标上字母)(2)如图2,两个直角边长分别为,斜边长为的直角三角形和一个两直角边都是的直角三角形拼成一个梯形.试用两种不同的方法计算梯形的面积,你能发现直角三角形的三边长有什么数量关系吗?(注:写出解答过程)(3)根据(2)中的结论回答,当时,的值为.21.我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如图①可以得到.请回答下列问题:(1)写出图②中所表示的数学等式______;(2)猜测______.(3)利用(1)中得到的结论,解决下面的问题:已知,,求的值;(4)在(3)的条件下,若a、b、c分别是一个三角形的三边长,请判断该三角形的形状,并说明理由.22.如图,点D,E是线段上的点,点F是线段上的点,,点H是上的点,且.求证:.请将下面的证明过程补充完整:证明:∵,∴______.(理由:_________)∵,∴_____.∴____________.(理由:______)∴.23.数形结合是解决数学问题的一种重要的思想方法,借助图的直观性,可以帮助理解数学问题.(1)请写出图1,图2,图3阴影部分的面积分别能解释的乘法公式.图1:____________,图2:____________,图3:____________;(2)用4个全等的长和宽分别为,的长方形拼摆成一个如图4的正方形,请你通过计算阴影部分的面积,直接写出这三个代数式,,之间的等量关系;(3)根据(1),(2)中你探索发现的结论,完成下列计算:已知,,求代数式①;②的值.24.如图,过射线上的点和点分别向两侧作射线,,,.已知,.过点作,交于点,且平分.(1)求的度数.(2)若,求证.25.如图,和的平分线交于点,的延长线交于点,且.(1)求证:;(2)猜想与的关系并证明.26.动手操作:(1)如图1,在的网格中,每个小正方形的边长为1,将线段向右平移,得到线段,连接,.①线段平移的距离是________;②四边形的面积是________;(2)如图2,在的网格中,将向右平移3个单位长度得到.③画出平移后的;④连接,,多边形的面积是________(3)拓展延伸:如图3,在一块长为米,宽为米的长方形草坪上,修建一条宽为米的小路(小路宽度处处相同),直接写出剩下的草坪面积是________.27.如图1,已知,.(1)求证:;(2)若点,在线段上,且满足平分,平分,如图2,求的度数;(3)若点在直线上,且满足,求的值(请自己画出正确图形,并解答)28.在综合与实践课上,老师让同学们以“两条平行线,和一块含角的直角三角尺(,)”为主题开展数学活动.(1)如图1,三角尺的角的顶点在上.若,则的度数为.(2)如图2,小颖把三角尺的两个锐角的顶点,分别放在和上,请你探索与之间的数量关系.(3)如图3,小亮把三角尺的直角顶点放在上,角的顶点在上.若,,请直接写出与的数量关系(用含,的式子表示).29.如图①,线段相交于点O,连接.我们把形如图①的图形称之为“8”字形.如图②,在图①的条件下,和的平分线和相交于点P,并且与分别相交于点M、N.解答下列问题:(1)在图①中,、、、之间的数量关系为______;(2)仔细观察,在图②中“8字形”有______个;(3)在图②中,若,,试求的度数;(4)若图②中和为任意角,其他条件不变,则与、之间的数量关系为______.30.已知:如图,中,是外角的平分线,与的延长线交于点E.(1)如图1,若,,求的度数;(2)如图2,作于F,若,求的度数.31.如图,,,,.(1)直线与有怎样的位置关系?说明理由;(2)若,求的度数.32.探究题:(1)【基本模型】:如图1,、为的外角,、的平分线交于点O,请你写出与的数量关系,并说明理由.(2)【变式应用】:如图2,已知不平行,、分别是和的角平分线,又、分别是和的角平分线.①若,在点A、B运动的过程中,的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论