




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山东省潍坊市教科所数学高二上期末达标检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.阅读如图所示程序框图,运行相应的程序,输出的S的值等于()A.2 B.6C.14 D.302.矿山爆破时,在爆破点处炸开的矿石的运动轨迹可看作是不同的抛物线,根据地质、炸药等因素可以算出这些抛物线的范围,这个范围的边界可以看作一条抛物线,叫“安全抛物线”,如图所示.已知某次矿山爆破时的安全抛物线的焦点为,则这次爆破时,矿石落点的最远处到点的距离为()A. B.2C. D.3.已知,则点关于平面的对称点的坐标是()A. B.C. D.4.在棱长为2的正方体中,是棱上一动点,点是面的中心,则的值为()A.4 B.C.2 D.不确定5.如图,、分别是椭圆的左顶点和上顶点,从椭圆上一点向轴作垂线,垂足为右焦点,且,点到右准线的距离为,则椭圆方程为()A. B.C. D.6.已知为坐标原点,点的坐标为,点的坐标满足,则的最小值为()A B.C. D.47.已知直线在x轴和y轴上的截距相等,则a的值是()A或1 B.或C. D.18.数列1,6,15,28,45,...中的每一项都可用如图所示的六边形表示出来,故称它们为六边形数,那么第10个六边形数为()A.153 B.190C.231 D.2769.若直线与圆相交于、两点,且(其中为原点),则的值为()A. B.C. D.10.设是虚数单位,则复数对应的点在平面内位于()A.第一象限 B.第二象限C.第三象限 D.第四象限11.如图,空间四边形OABC中,,,,点M在上,且满足,点N为BC的中点,则()A. B.C. D.12.已知圆:,点,则点到圆上点的最小距离为()A.1 B.2C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若,且数列是严格递增数列或严格递减数列,则实数a取值范围是______14.已知,,则以AB为直径的圆的方程为___________.15.若正数x、y满足,则的最小值等于________.16.复数的实部为_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在几何体中,底面是边长为2的正三角形,平面,,且,是的中点(1)求证:平面;(2)求异面直线与所成的角的余弦值18.(12分)已知单调递增的等比数列满足:,且是,的等差中项(1)求数列的通项公式;(2)若,,求19.(12分)求满足下列条件的圆锥曲线方程的标准方程.(1)经过点,两点的椭圆;(2)与双曲线-=1有相同的渐近线且经过点的双曲线.20.(12分)已知椭圆的中心在原点,焦点在轴上,长轴长为4,离心率等于(1)求椭圆的方程(2)设,若椭圆E上存在两个不同点P、Q满足,证明:直线PQ过定点,并求该定点的坐标.21.(12分)设命题方程表示中心在原点,焦点在坐标轴上的双曲线;命题,,若“”为假命题,“”为真命题,求实数的取值范围.22.(10分)已知为各项均为正数的等比数列,且,.(1)求数列的通项公式;(2)令,求数列前n项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】模拟运行程序,直到得出输出的S的值.【详解】运行程序框图,,,;,,;,,;,输出.故选:C2、D【解析】根据给定条件求出抛物线的顶点,结合抛物线的性质求出p值即可计算作答.【详解】依题意,抛物线的顶点坐标为,则抛物线的顶点到焦点的距离为,p>0,解得,于是得抛物线的方程为,由得,,即抛物线与轴的交点坐标为,因此,,所以矿石落点的最远处到点的距离为.故选:D3、C【解析】根据对称性求得坐标即可.【详解】点关于平面的对称点的坐标是,故选:C4、A【解析】画出图形,建立空间直角坐标系,用向量法求解即可【详解】如图,以为原点建立如图所示的空间直角坐标系,因为正方体棱长为2,点是面的中心,是棱上一动点,所以,,,故选:A5、A【解析】设椭圆方程为,设该椭圆的焦距为,则,求出点的坐标,根据可得出,可得出,,结合已知条件求得的值,可得出、的值,即可得出椭圆的方程.【详解】设椭圆方程为,设该椭圆的焦距为,则,由图可知,点第一象限,将代入椭圆方程得,得,所以,点,易知点、,,,因为,则,得,可得,则,点到右准线的距离为为,则,,因此,椭圆的方程为.故选:A.6、B【解析】由数量积的坐标运算求得,令,化为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案【详解】解:根据题意可得,、,所以,令,由约束条件作出可行域如下图所示,由得,即,由,得,由图可知,当直线过时,直线在轴上的截距最小,有最小值为,即,所以故选:B7、A【解析】分截距都为零和都不为零讨论即可.【详解】当截距都为零时,直线过原点,;当截距不为零时,,.综上:或.故选:A.8、B【解析】细心观察,寻求相邻项及项与序号之间的关系,同时联系相关知识,如等差数列、等比数列等,结合图形可知,,,,,,,据此即可求解.【详解】由题意知,数列的各项为1,6,15,28,45,...所以,,,,,,所以.故选:B【点睛】本题考查合情推理中的归纳推理;考查逻辑推理能力;观察分析、寻求规律是求解本题的关键;属于中档题、探索型试题.9、D【解析】分析出为等腰直角三角形,可得出原点到直线的距离,利用点到直线的距离公式可得出关于的等式,由此可解得的值.【详解】圆的圆心为原点,由于且,所以,为等腰直角三角形,且圆心到直线的距离为,由点到直线的距离公式可得,解得.故选:D.【点睛】关键点点睛:本题考查利用圆周角求参数,解题的关键在于求出弦心距,再利用点到直线的距离公式列方程求解参数.10、A【解析】计算出复数即可得出结果.【详解】由于,对应的点的坐标为,在第一象限,故选:A.11、B【解析】由空间向量的线性运算求解【详解】由题意,又,,,∴,故选:B12、C【解析】写出圆的圆心和半径,求出距离的最小值,再结合圆外一点到圆上点的距离最小值的方法即可求解.【详解】由圆:,得圆,半径为,所以,所以点到圆上点的最小距离为.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据数列递增和递减的定义求出实数a的取值范围.【详解】因为数列是严格递增数列或严格递减数列,所以.若数列是严格递增数列,则,即,即恒成立,故;若数列是严格递减数列,则,即,即恒成立,由,故;综上,实数a的取值范围是故答案为:14、【解析】求圆心及半径即可.【详解】由已知可得圆心坐标为,半径为,所以圆的方程为:.故答案为:15、9【解析】把要求的式子变形为,利用基本不等式即可得结果.【详解】因为,所以,当且仅当时取等号,故答案为.【点睛】本题主要考查利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).16、【解析】复数,其实部为.考点:复数的乘法运算、实部.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)设为中点,连接,,证明四边形为平行四边形即可;(2)确定异面直线与所成的角为,计算三角形各边长,根据余弦定理计算得到答案.【小问1详解】设为中点,连接,,∵为中点,是的中点,,,故,且,故,且,∴四边形为平行四边形,∴,平面,平面,故平面.【小问2详解】∵,故异面直线与所成的角为,在中:,,.根据余弦定理:,所以异面直线与所成的角的余弦值为.18、(1);(2)【解析】(1)将已知条件整理变形为等比数列的首项和公比来表示,解方程组得到基本量,可得到通项公式(2)化简通项得,根据特点求和时采用错位相减法求解试题解析:(1)设等比数列的首项为,公比为,依题意,有2()=+,代入,得=8,2分∴+=20∴解之得或4分又单调递增,∴="2,"=2,∴=2n6分(2),∴①8分∴②∴①-②得=12分考点:1.等比数列通项公式;2.错位相减求和19、(1);(2)【解析】(1)由题意可得,,从而可求出椭圆的标准方程,(2)由题意设双曲线的共渐近线方程为,再将的坐标代入方程可求出的值,从而可求出双曲线方程【小问1详解】因为,所以P、Q分别是椭圆长轴和短轴上的端点,且椭圆的焦点在x轴上,所以,所以椭圆的标准方程为.【小问2详解】设与双曲线共渐近线的方程为,代入点,解得m=2,所以双曲线的标准方程为20、(1);(2)证明见解析,.【解析】(1)由题可得,即求;(2)设直线PQ的方程为,联立椭圆方程,利用韦达定理法可得,即得.【小问1详解】由题可设椭圆的方程为,则,∴,∴椭圆的方程为;【小问2详解】当直线PQ的斜率存在时,可设直线PQ的方程为,设,由,得,∴,∵,,∴,∴,∴,∴,又∴,∴直线PQ的方程为过定点;当直线PQ的斜率不存在时,不合题意.故直线PQ过定点,该定点的坐标为.21、【解析】求出当命题、分别为真命题时实数的取值范围,分析可知、中一真一假,分真假、假真两种情况讨论,求出对应的实数的取值范围,综合可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 主承办单位安全协议书
- 仓储一体化服务协议书
- 高空安全协议协议书
- 交房屋定金有效协议书
- 饭店楼上住户协议书
- 车辆事故出院协议书
- 项目整体回购协议书
- 车间安全管理总结报告
- 食品过期调解协议书
- 送货司机责任协议书
- 《人类起源的演化过程》阅读测试题及答案
- MOOC 葡萄酒文化与鉴赏-西北工业大学 中国大学慕课答案
- 学前教育技能实训报告
- 3D打印在医疗设备中的应用
- 《祝福》-课件(共60张)
- IoT网络自组织与自愈能力提升
- 建设工程规划验收测量技术报告(示例)
- 刘铁敏《金融专业英语》(第2版)-习题参考答案20
- 小学生主题班会 小学少先队入队前教育《六知六会一做》 课件
- 2023中华护理学会团体标准-老年人误吸的预防
- GH-T 1011-2022 榨菜标准规范
评论
0/150
提交评论