湖北省黄冈市巴驿中学2025届数学高二上期末综合测试试题含解析_第1页
湖北省黄冈市巴驿中学2025届数学高二上期末综合测试试题含解析_第2页
湖北省黄冈市巴驿中学2025届数学高二上期末综合测试试题含解析_第3页
湖北省黄冈市巴驿中学2025届数学高二上期末综合测试试题含解析_第4页
湖北省黄冈市巴驿中学2025届数学高二上期末综合测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省黄冈市巴驿中学2025届数学高二上期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,已知多面体,其中是边长为4的等边三角形,四边形是矩形,,平面平面,则点到平面的距离是()A. B.C. D.2.中,内角A,B,C的对边分别为a,b,c,若,则等于()A. B.C. D.3.椭圆的短轴长为()A.8 B.2C.4 D.4.执行如图所示的程序框图,若输出的,则输入的可能为()A.9 B.5C.4 D.35.设满足则的最大值为A. B.2C.4 D.166.圆与圆的位置关系是()A.相交 B.相离C.内切 D.外切7.某次数学考试试卷评阅采用“双评+仲裁”的方式,规则如下:两位老师独立评分,称为一评和二评,当两者所评分数之差的绝对值小于或等于分时,取两者平均分为该题得分;当两者所评分数之差的绝对值大于分时,再由第三位老师评分,称之为仲裁,取仲裁分数和一、二评中与之接近的分数的平均分为该题得分.如图所示,当,,时,则()A. B.C.或 D.8.函数的最小值是()A.3 B.4C.5 D.69.某中学为了解高三男生的体能情况,通过随机抽样,获得了200名男生的100米体能测试成绩(单位:秒),将数据按照,,…,分成9组,制成了如图所示的频率分布直方图.规定成绩低于13秒为优,成绩高于14.8秒为不达标.由直方图推断,下列选项错误的是()A.直方图中a的值为0.40B.由直方图估计本校高三男生100米体能测试成绩的众数为13.75秒C.由直方图估计本校高三男生100米体能测试成绩为优的人数为54D.由直方图估计本校高三男生100米体能测试成绩为不达标的人数为1810.已知圆C的方程为,点P在圆C上,O是坐标原点,则的最小值为()A.3 B.C. D.11.不等式表示的平面区域是一个()A.三角形 B.直角三角形C.矩形 D.梯形12.若直线与平行,则实数m等于()A.1 B.C.4 D.0二、填空题:本题共4小题,每小题5分,共20分。13.将数列{n}按“第n组有n个数”的规则分组如下:(1),(2,3),(4,5,6),…,则第22组中的第一个数是_________14.正方体的棱长为2,点为底面正方形的中心,点在侧面正方形的边界及其内部运动,若,则点的轨迹的长度为______15.曲线在点处的切线方程为__________.16.在空间四边形ABCD中,AD=2,BC=2,E,F分别是AB,CD的中点,EF=,则异面直线AD与BC所成角的大小为____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆:的左、右焦点分别为,,离心率等于,点,且的面积等于(1)求椭圆的标准方程;(2)已知斜率存在且不为0的直线与椭圆交于A,B两点,当点A关于y轴的对称点在直线PB上时,直线是否过定点?若过定点,求出此定点;若不过,请说明理由18.(12分)数列满足,,.(1)证明:数列是等差数列;(2)设,求数列的前项和.19.(12分)已知函数.(1)当时,讨论的单调性;(2)当时,证明:.20.(12分)已知向量,(1)求;(2)求;(3)若(),求的值21.(12分)某市对排污水进行综合治理,征收污水处理费,系统对各厂一个月内排出的污水量x吨收取的污水处理费y元,运行程序如图所示:INPUTxIFTHENELSEIFTHENELSEENDIFENDIFPRINTyEND(1)请写出y与x的函数关系式;(2)求排放污水150吨的污水处理费用.22.(10分)在平面直角坐标系中,过点且倾斜角为的直线与曲线(为参数)交于两点.(1)将曲线的参数方程转化为普通方程;(2)求长.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用面面垂直性质结合已知寻找两两垂直的三条直线建立空间直角坐标系,用向量法可解.【详解】取的中点O,连接OB,过O在平面ACDE面内作交DE于F∵平面平面ABC,平面ACDE平面ABC=AC,平面ACDE,∴平面ABC∴∵是边长为4的等边三角形,四边形ACDE是矩形,∴以O为原点,OA,OB,OF分别为x,y,z轴,建立如图所示空间直角坐标系则,,,设平面ABD的单位法向量,,由解得取,则∴点C到平面ABD的距离.故选:C2、A【解析】由题得,进而根据余弦定理求解即可.【详解】解:依题意,即,所以,所以,由于,所以故选:A3、C【解析】根据椭圆的标准方程求出,进而得出短轴长.【详解】由,可得,所以短轴长为.故选:C.4、D【解析】根据输出结果可得输出时,结合执行逻辑确定输入k的可能值,即可知答案.【详解】由,得,则输人的可能为.∴结合选项知:D符合要求.故选:D.5、C【解析】可行域如图,则直线过点A(0,1)取最大值2,则的最大值为4,选C.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.6、A【解析】求出两圆的圆心及半径,求出圆心距,从而可得出结论.【详解】解:圆的圆心为,半径为,圆圆心为,半径为,则两圆圆心距,因为,所以两圆相交.故选:A.7、B【解析】按照框图考虑成立和不成立即可求解.【详解】因为,,,所以输入,当成立时,,即,解得,,满足条件;当不成立时,,即,解得,,不满足条件;故.故选:B.8、D【解析】先判断函数的单调性,再利用其单调性求最小值【详解】由,得,因为,所以,所以在上单调递增,所以,故选:D9、D【解析】根据频率之和为求得,结合众数、频率等知识对选项进行分析,从而确定正确答案.【详解】,解得,A选项正确.众数为,B选项正确.成绩低于秒的频率为,人数为,所以C选项正确.成绩高于的频率为,人数为人,D选项错误.故选:D10、B【解析】化简判断圆心和半径,利用圆的性质判断连接线段OC,交圆于点P时最小,再计算求值即得结果.【详解】化简得圆C的标准方程为,故圆心是,半径,则连接线段OC,交圆于点P时最小,因为原点到圆心的距离,故此时.故选:B.11、D【解析】作出不等式组所表示平面区域,可得出结论.【详解】由可得或,作出不等式组所表示的平面区域如下图中的阴影部分区域所示:由图可知,不等式表示的平面区域是一个梯形.故选:D.12、B【解析】两直线平行的充要条件【详解】由于,则,.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由已知,第组中最后一个数即为前组数的个数和,由此可求得第21组的最后一个数,从而就可得第22组的第一个数.【详解】由条件可知,第21组的最后一个数为,所以第22组的第1个数为.故答案为:14、【解析】取中点,利用线面垂直的判定方法可证得平面,由此可确定点轨迹为,再计算即可.【详解】取中点,连接,平面,平面,,又四边形为正方形,,又,平面,平面,又平面,;由题意得:,,,,;平面,,平面,,在侧面的边界及其内部运动,点轨迹为线段;故答案为:.15、【解析】先求导数,再根据导数几何意义得切线斜率,最后根据点斜式求切线方程.【详解】函数的导数为,所以切线的斜率,切点为,则切线方程为故答案为:【点睛】易错点睛:求曲线的切线要注意“过点P的切线”与“在点P处的切线”的差异,过点P的切线中,点P不一定是切点,点P也不一定在已知曲线上,而在点P处的切线,必以点P为切点,考查学生的运算能力,属于基础题.16、【解析】由已知找到异面直线所成角的平面角,再运用余弦定理可得答案.【详解】解:设BD的中点为O,连接EO,FO,所以,则∠EOF(或其补角)就是异面直线AD,BC所成的角的平面角,又因为EO=AD=1,FO=BC=,EF=.根据余弦定理得=-,所以∠EOF=150°,异面直线AD与BC所成角的大小为30°.故答案为:30°.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)用待定系数法求出椭圆的标准方程;(2)设直线的方程为,设,用“设而不求法”表示出和.表示出直线PB,把A关于y轴的对称点为带入后整理化简,即可得到,从而可以判断出直线恒过定点.【小问1详解】由题意可得:,解得:,所以椭圆的标准方程为:.【小问2详解】由题意可知,直线的斜率存在且不为0,设直线的方程为,设设点A关于y轴的对称点为.联立方程组,消去y可得:,所以.因为直线PB的方程为,且点D在直线PB上,所以则,所以,则,故,因为k≠0,所以,则直线l的方程为,所以直线恒过定点.18、(1)证明见解析;(2)【解析】(1)将的两边同除以,得到,由等差数列的定义,即可作出证明;(2)有(1)求出,利用错位相减法即可求解数列的前项和.试题解析:(1)证明:由已知可得=+1,即-=1.所以是以=1为首项,1为公差的等差数列(2)由(1)得=1+(n-1)·1=n,所以an=n2.从而bn=n·3n.Sn=1·31+2·32+3·33+…+n·3n,①3Sn=1·32+2·33+…+(n-1)·3n+n·3n+1.②①-②得-2Sn=31+32+…+3n-n·3n+1=-n·3n+1=.所以Sn=.点睛:本题主要考查了等差数列的定义、等差数列的判定与证明和数列的求和,着重考查了学生分析问题和解答问题的能力,本的解答中利用等差数列的定义得到数列为等差数列,求解的表达式,从而化简得到,利用乘公比错位相减法求和中,准确计算是解答的一个难点.19、(1)在上单调递减,在上单调递增(2)证明见解析【解析】(1)当时,利用求得的单调区间.(2)将问题转化为证明,利用导数求得的最小值大于零,从而证得不等式成立.【小问1详解】当时,,且,又与均在上单调递增,所以在上单调递增.当时,单调递减;当时,单调递增综上,在上单调递减,在上单调递增.【小问2详解】因为,所以,要证,只需证当时,即可.,易知在上单调递增,又,所以,且,即,当时,单调递减;当时,单调递增,,所以.【点睛】在证明不等式的过程中,直接证明困难时,可考虑证明和两个不等式成立,从而证得成立.20、(1)(2)(3)【解析】(1)根据向量数量积的坐标表示即可得解;(2)求出,再根据空间向量的模的坐标表示即可得解;(3)由,可得,再根据数量积的运算律即可得解.【小问1详解】解:;【小问2详解】解:;【小问3详解】解:因为,所以,即,解得.21、(1);(2)1400(元).【解析】(1)根据已知条件即可容易求得函数关系

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论