版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、选择题1.如图,ABC中∠BAC=90°,将周长为12的ABC沿BC方向平移2个单位得到DEF,连接AD,则下列结论:①ACDF,AC=DF;②DE⊥AC;③四边形ABFD的周长是16;④,其中正确的个数有()A.1个 B.2个 C.3个 D.4个2.如图,,点E是边DC上一点,连接AE交BC的延长线于点H,点F是边AB上一点,使得,作的角平分线交BH于点G,若,则的度数是()A. B. C. D.3.如图,直线AB,CD相交于点O,EO⊥AB,垂直为点O,∠BOD=50°,则∠COE=()A.30° B.140° C.50° D.60°4.一副直角三角板如图放置,其中∠F=∠ACB=90°,∠D=45°,∠B=60°,AB//DC,则∠CAE的度数为()A.25° B.20° C.15° D.10°5.如下图,在“”字型图中,、被所截,则与是()A.同位角 B.内错角 C.同旁内角 D.邻补角6.如图,直线,,则的度数为()A. B. C. D.7.如图,,平分,,点在的延长线上,连接,,下列结论:①;②平分;③;④.其中正确的个数为()A.1个 B.2个 C.3个 D.4个8.已知,如图,点D是射线上一动点,连接,过点D作交直线于点E,若,,则的度数为()A. B. C.或 D.或9.如图,长方形中,,第一次平移长方形沿的方向向右平移5个单位,得到长方形,第3次平移将长方形沿的方向向右平移5个单位,得到长方形,…第n次平移将长方形的方向平移5个单位,得到长方形,若的长度为2022,则n的值为()A.403 B.404 C.405 D.40610.如图,AB∥CD,∠EBF=∠FBA,∠EDG=∠GDC,∠E=45°,则∠H为()A.22° B.22.5° C.30° D.45°二、填空题11.如图,已知A1BAnC,则∠A1+∠A2+…+∠An等于__________(用含n的式子表示).12.如图,已知,,,则_________13.一副三角尺按如图所示叠放在一起,其中点重合,若固定三角形,将三角形绕点顺时针旋转一周,共有_________次出现三角形的一边与三角形AOB的某一边平行.14.某段铁路两旁安置了两座可旋转探照灯,主道路是平行,即PQ∥MN.如图所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是每秒2度,灯B转动的速度是每秒1度.若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动_________秒,两灯的光束互相平行.15.如图,AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BFD=35°,那么∠BED的度数为_______.16.如图,两直线AB、CD平行,则__________.17.如图,△ABC沿AB方向平移3个单位长度后到达△DEF的位置,BC与DF相交于点O,连接CF,已知△ABC的面积为14,AB=7,S△BDO﹣S△COF=___.18.已知:如图,平分,,,,则___.19.如图,将一张长方形纸片ABCD沿EF折叠,点D、C分别落在点D'、C′的位置处,若∠1=56°,则∠EFB的度数是___.20.如图,a∥b,∠2=∠3,则∠4的度数是___度.三、解答题21.如图,直线AB∥直线CD,线段EF∥CD,连接BF、CF.(1)求证:∠ABF+∠DCF=∠BFC;(2)连接BE、CE、BC,若BE平分∠ABC,BE⊥CE,求证:CE平分∠BCD;(3)在(2)的条件下,G为EF上一点,连接BG,若∠BFC=∠BCF,∠FBG=2∠ECF,∠CBG=70°,求∠FBE的度数.22.如图,直线,点是、之间(不在直线,上)的一个动点.(1)如图1,若与都是锐角,请写出与,之间的数量关系并说明理由;(2)把直角三角形如图2摆放,直角顶点在两条平行线之间,与交于点,与交于点,与交于点,点在线段上,连接,有,求的值;(3)如图3,若点是下方一点,平分,平分,已知,求的度数.23.如图,已知直线射线CD,.P是射线EB上一动点,过点P作PQEC交射线CD于点Q,连接CP.作,交直线AB于点F,CG平分.(1)若点P,F,G都在点E的右侧,求的度数;(2)若点P,F,G都在点E的右侧,,求的度数;(3)在点P的运动过程中,是否存在这样的情形,使?若存在,求出的度数;若不存在,请说明理由.24.已知,点在与之间.(1)图1中,试说明:;(2)图2中,的平分线与的平分线相交于点,请利用(1)的结论说明:.(3)图3中,的平分线与的平分线相交于点,请直接写出与之间的数量关系.25.如图,已知直线,点在直线上,点在直线上,点在点的右侧,平分平分,直线交于点.(1)若时,则___________;(2)试求出的度数(用含的代数式表示);(3)将线段向右平行移动,其他条件不变,请画出相应图形,并直接写出的度数.(用含的代数式表示)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据平移的性质逐一判定即可.【详解】解:∵将ABC沿BC向右平移2个单位得到DEF,∴ACDF,AC=DF,AB=DE,BC=EF,AD=BE=CF=2,∠BAC=∠EDF=90°,∴ED⊥DF,四边形ABFD的周长=AB+BC+CF+DF+AD=12+2+2=16.∵S△ABC=S△DEF,∴S△ABC﹣S△OEC=S△DEF﹣S△OEC,∴S四边形ABEO=S四边形CFDO,即结论正确的有4个.故选:D.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.也考查了平移的距离以及图形的面积.2.B解析:B【分析】AD∥BC,∠D=∠ABC,则AB∥CD,则∠AEF=180°-∠AED-∠BEG=180°-2β,在△AEF中,100°+2α+180°-2β=180°,故β-α=40°,即可求解.【详解】解:设FBE=∠FEB=α,则∠AFE=2α,∠FEH的角平分线为EG,设∠GEH=∠GEF=β,AD∥BC,∴∠ABC+∠BAD=180°,而∠D=∠ABC,∴∠D+∠BAD=180°,∴AB∥CD,∠DEH=100°,则∠CEH=∠FAE=80°,∠AEF=180°-∠FEG-∠BEG=180°-2β,在△AEF中,在△AEF中,80°+2α+180-2β=180°故β-α=40°,而∠BEG=∠FEG-∠FEB=β-α=40°,故选:B.【点睛】此题考查平行线的性质,解题关键是落脚于△AEF内角和为180°,即100°+2α+180°-2β=180°,题目难度较大.3.B解析:B【详解】试题解析:EO⊥AB,故选B.4.C解析:C【分析】利用平行线的性质和给出的已知数据即可求出的度数.【详解】解:,,,,,,,,,故选:C.【点睛】本题考查了平行线的性质,解题的关键是熟记平行线的性质.5.A解析:A【分析】根据同位角,内错角,同旁内角和邻补角的定义判断即可.【详解】解:在“”字型图中,两条直线、被所截形成的角中,∠A与∠4都在直线AB、DE的同侧,并且在第三条直线(截线)AC的同旁,则∠A与∠4是同位角.故选:A.【点睛】本题主要考查了同位角,内错角,同旁内角和邻补角的定义,正确理解定义是解题的关键.6.B解析:B【分析】记∠1顶点为A,∠2顶点为B,∠3顶点为C,过点B作BD∥l1,由平行线的性质可得∠3+∠DBC=180°,∠ABD+(180°-∠1)=180°,由此得到∠3+∠2+(180°-∠1)=360°,再结合已知条件即可求出结果.【详解】如图,过点B作BD∥l1,∵,∴BD∥l1∥l2,∴∠3+∠DBC=180°,∠ABD+(180°-∠1)=180°,∴∠3+∠DBC+∠ABD+(180°-∠1)=360°,即∠3+∠2+(180°-∠1)=360°,又∵∠2+∠3=216°,∴216°+(180°-∠1)=360°,∴∠1=36°.故选:B.【点睛】本题考查了平行线的性质,正确作出辅助线,熟练掌握平行线性质是解题的关键.7.D解析:D【分析】结合平行线性质和平分线判断出①②正确,再结合平行线和平分线根据等量代换判断出③④正确即可.【详解】解:∵ABCD,∴∠1=∠2,∵AC平分∠BAD,∴∠2=∠3,∴∠1=∠3,∵∠B=∠CDA,∴∠1=∠4,∴∠3=∠4,∴BCAD,∴①正确;∴CA平分∠BCD,∴②正确;∵∠B=2∠CED,∴∠CDA=2∠CED,∵∠CDA=∠DCE+∠CED,∴∠ECD=∠CED,∴④正确;∵BCAD,∴∠BCE+∠AEC=180°,∴∠1+∠4+∠DCE+∠CED=180°,∴∠1+∠DCE=90°,∴∠ACE=90°,∴AC⊥EC,∴③正确故其中正确的有①②③④,4个,故选:D.【点睛】此题考查平行线的性质和角平分线的性质,难度一般,利用性质定理判断是关键.8.D解析:D【分析】分点D在线段AB上及点D在线段AB的延长线上两种情况考虑:当点D在线段AB上时,由DE∥BC可得出∠ADE的度数,结合∠ADC=∠ADE+∠CDE可求出∠ADC的度数;当点D在线段AB的延长线上时,由DE∥BC可得出∠ADE的度数,结合∠ADC=∠ADE-∠CDE可求出∠ADC的度数.综上,此题得解.【详解】解:当点D在线段AB上时,如图1所示.∵DE∥BC,∴∠ADE=∠ABC=84°,∴∠ADC=∠ADE+∠CDE=84°+20°=104°;当点D在线段AB的延长线上时,如图2所示.∵DE∥BC,∴∠ADE=∠ABC=84°,∴∠ADC=∠ADE-∠CDE=84°-20°=64°.综上所述:∠ADC=104°或64°.故选:D.【点睛】本题考查了平行线的性质,分点D在线段AB上及点D在线段AB的延长线上两种情况,求出∠ADC的度数是解题的关键.9.A解析:A【分析】根据平移的性质得出AA1=5,A1A2=5,A2B1=A1B1-A1A2=7-5=2,进而求出AB1和AB2的长,然后根据所求得出数字变化规律,进而得出ABn=(n+1)×5+2求出n即可.【详解】解:∵AB=7,第1次平移将长方形ABCD沿AB的方向向右平移5个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位,得到长方形A2B2C2D2…,∴AA1=5,A1A2=5,A2B1=A1B1-A1A2=7-5=2,∴AB1=AA1+A1A2+A2B1=5+5+2=12,∴AB2的长为:5+5+7=17;∵AB1=2×5+2=12,AB2=3×5+2=17,∴ABn=(n+1)×5+2=2022,解得:n=403.故选:A.【点睛】此题主要考查了平移的性质以及一元一次方程的应用,根据平移的性质得出AA1=5,A1A2=5是解题关键.10.B解析:B【分析】过作,过作,利用平行线的性质解答即可.【详解】解:过作,过作,,,,,,,,,,,.故选:B.【点睛】此题考查平行线的性质,关键是作出辅助线,利用平行线的性质解答.二、填空题11.【分析】过点向右作,过点向右作,得到,根据两直线平行同旁内角互补即可得出答案.【详解】解:如图,过点向右作,过点向右作,故答案为:.【点睛】本题考查了平行线的性质定理,根据题解析:【分析】过点向右作,过点向右作,得到,根据两直线平行同旁内角互补即可得出答案.【详解】解:如图,过点向右作,过点向右作,故答案为:.【点睛】本题考查了平行线的性质定理,根据题意作合适的辅助线是解题的关键.12.90°【分析】根据AB∥CF,可得出∠B和∠BCF的关系,根据CF∥DE,可得出∠FED和∠D的关系,合并即可得出∠D―∠B的大小【详解】∵AB∥CF,∴∠B=∠BCF∵CF∥DE∴∠解析:90°【分析】根据AB∥CF,可得出∠B和∠BCF的关系,根据CF∥DE,可得出∠FED和∠D的关系,合并即可得出∠D―∠B的大小【详解】∵AB∥CF,∴∠B=∠BCF∵CF∥DE∴∠FCD+∠D=180°∴∠FCD+∠D-∠B=180°-∠BCF,化简得:∠D-∠B=180°-(∠BCF+∠FCD)∵∠BCD=90°,∴∠BCF+∠FCD=90°∴∠D―∠B=90°故答案为:90°【点睛】本题考查平行线的性质,解题关键是将∠BCD分为∠BCF和∠FCD,然后利用平行线的性质进行角度转换.13.【分析】要分类讨论,不要漏掉任何一种情况,也可实际用三角板操作找到它们之间的关系,再计算.【详解】解:分10种情况讨论:(1)如图1,AD边与OB边平行时,∠BAD=45°或135°;;解析:【分析】要分类讨论,不要漏掉任何一种情况,也可实际用三角板操作找到它们之间的关系,再计算.【详解】解:分10种情况讨论:(1)如图1,AD边与OB边平行时,∠BAD=45°或135°;;(2)如图2,当AC边与OB平行时,∠BAD=90°+45°=135°或45°;(3)如图3,DC边与AB边平行时,∠BAD=60°+90°=150°,(4)如图4,DC边与OB边平行时,∠BAD=135°+30°=165°,(5)如图5,DC边与OB边平行时,∠BAD=45°﹣30°=15°;(6)如图6,DC边与AO边平行时,∠BAD=15°+90°=105°(7)如图7,DC边与AB边平行时,∠BAD=30°,(8)如图8,DC边与AO边平行时,∠BAD=30°+45°=75°;综上所述:∠BAD的所有可能的值为:15°,30°,45°,75°,105°,135°,150°,165°.故答案为:8.【点睛】本题考查了平行线的性质及判定,画出所有符合题意的示意图是解决本题的关键.14.30或110【分析】分两种情况讨论:两束光平行;两束光重合之后(在灯B射线到达BQ之前)平行,然后利用平行线的性质求解即可.【详解】解:设灯转动t秒,两灯的光束互相平行,即AC∥BD,①当解析:30或110【分析】分两种情况讨论:两束光平行;两束光重合之后(在灯B射线到达BQ之前)平行,然后利用平行线的性质求解即可.【详解】解:设灯转动t秒,两灯的光束互相平行,即AC∥BD,①当0<t≤90时,如图1所示:∵PQ∥MN,则∠PBD=∠BDA,∵AC∥BD,则∠CAM=∠BDA,∴∠PBD=∠CAM有题意可知:2t=30+t解得:t=30,②当90<t<150时,如图2所示:∵PQ∥MN,则∠PBD+∠BDA=180°,∵AC∥BD,则∠CAN=∠BDA,∴∠PBD+∠CAN=180°,∴30+t+(2t-180)=180解得:t=110综上所述,当t=30秒或t=110秒时,两灯的光束互相平行.故答案为:30或110【点睛】本题主要考查补角、角的运算、平行线的性质的应用,解题的关键是熟练掌握平行线的性质,注意分两种情况谈论.15.70°【分析】此题要构造辅助线:过点E,F分别作EG∥AB,FH∥AB.然后运用平行线的性质进行推导.【详解】解:如图所示,过点E,F分别作EG∥AB,FH∥AB.∵EG∥AB,FH∥A解析:70°【分析】此题要构造辅助线:过点E,F分别作EG∥AB,FH∥AB.然后运用平行线的性质进行推导.【详解】解:如图所示,过点E,F分别作EG∥AB,FH∥AB.∵EG∥AB,FH∥AB,∴∠5=∠ABE,∠3=∠1,又∵AB∥CD,∴EG∥CD,FH∥CD,∴∠6=∠CDE,∠4=∠2,∴∠1+∠2=∠3+∠4=∠BFD=35°.∵BF平分∠ABE,DF平分∠CDE,∴∠ABE=2∠1,∠CDE=2∠2,∴∠BED=∠5+∠6=2∠1+2∠2=2(∠1+∠2)=2×35°=70°.故答案为70°.【点睛】本题主要考查了平行线的性质,根据题中的条件作出辅助线EG∥AB,FH∥AB,再灵活运用平行线的性质是解本题的关键.16.【分析】根据题意,通过添加平行线,利用内错角和同旁内角,把这五个角转化成4个的角.【详解】分别过F点,G点,H点作,,平行于AB利用内错角和同旁内角,把这五个角转化一下,可得,有4个的角,解析:【分析】根据题意,通过添加平行线,利用内错角和同旁内角,把这五个角转化成4个的角.【详解】分别过F点,G点,H点作,,平行于AB利用内错角和同旁内角,把这五个角转化一下,可得,有4个的角,.故答案为.【点睛】本题考查了平行线的性质:两直线平行,同旁内角互补,添加辅助线是解题关键.17.2【分析】如图,连接CD,过点C作CG⊥AB于G.利用三角形面积公式求出CG,再根据S△BDO﹣S△COF=S△CDB﹣S△CDF=求解即可.【详解】解:如图,连接CD,过点C作CG⊥AB于解析:2【分析】如图,连接CD,过点C作CG⊥AB于G.利用三角形面积公式求出CG,再根据S△BDO﹣S△COF=S△CDB﹣S△CDF=求解即可.【详解】解:如图,连接CD,过点C作CG⊥AB于G.∵S△ABC=•AB•CG,∴CG==4,∵AD=CF=3,AB=7,∴BD=AB﹣AD=7﹣3=4,∴S△BDO﹣S△COF=S△CDB﹣S△CDF=,故答案为:2.【点睛】本题考查三角形的面积,平移变换等知识,解题的关键是学会用转化的思想思考问题.18.100°【分析】先由同位角相等,证得,进而证得,再由平行线的性质得出与的数量关系,然后由已知条件求得,最后用减去,即可求得答案.【详解】解:,平分,故答案为:.【点睛解析:100°【分析】先由同位角相等,证得,进而证得,再由平行线的性质得出与的数量关系,然后由已知条件求得,最后用减去,即可求得答案.【详解】解:,平分,故答案为:.【点睛】本题考查了平行线的判定与性质,解题的关键是熟练掌握相关判定定理与性质定理.19.62°【分析】根据折叠性质得出∠DED′=2∠DEF,根据∠1的度数求出∠DED′,即可求出∠DEF的度数,进而得到答案.【详解】解:由翻折的性质得:∠DED′=2∠DEF,∵∠1=56°解析:62°【分析】根据折叠性质得出∠DED′=2∠DEF,根据∠1的度数求出∠DED′,即可求出∠DEF的度数,进而得到答案.【详解】解:由翻折的性质得:∠DED′=2∠DEF,∵∠1=56°,∴∠DED′=180°-∠1=124°,∴∠DEF=62°,又∵AD∥BC,∴∠EFB=∠DEF=62°.故答案为:62°.【点睛】本题考查了平行线的性质,翻折变换的性质,邻补角定义的应用,熟记折叠的性质是解题的关键.20.40【分析】分别作a∥c,a∥d,则a∥b∥c∥d,由题可知根据平行线的性质得出再用等式的性质得出再根据平行线的性质由a∥c,b∥d,得出即可得出.【详解】如图,作a∥c,a∥d,则a∥b∥解析:40【分析】分别作a∥c,a∥d,则a∥b∥c∥d,由题可知根据平行线的性质得出再用等式的性质得出再根据平行线的性质由a∥c,b∥d,得出即可得出.【详解】如图,作a∥c,a∥d,则a∥b∥c∥d,∵∠2=∠3,∴又∵c∥d,∴∴∵a∥c,b∥d,∴∴故答案为:40.【点睛】本题考查平行线的判定与性质,解题关键是熟练掌握平行线的判定与性质;两直线平行,内错角相等;如果两条直线都和第三条直线平行,那么这两条直线也互相平行.三、解答题21.(1)证明见解析;(2)证明见解析;(3)∠FBE=35°.【分析】(1)根据平行线的性质得出∠ABF=∠BFE,∠DCF=∠EFC,进而解答即可;(2)由(1)的结论和垂直的定义解答即可;(3)由(1)的结论和三角形的角的关系解答即可.【详解】证明:(1)∵AB∥CD,EF∥CD,∴AB∥EF,∴∠ABF=∠BFE,∵EF∥CD,∴∠DCF=∠EFC,∴∠BFC=∠BFE+∠EFC=∠ABF+∠DCF;(2)∵BE⊥EC,∴∠BEC=90°,∴∠EBC+∠BCE=90°,由(1)可得:∠BFC=∠ABE+∠ECD=90°,∴∠ABE+∠ECD=∠EBC+∠BCE,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ECD=∠BCE,∴CE平分∠BCD;(3)设∠BCE=β,∠ECF=γ,∵CE平分∠BCD,∴∠DCE=∠BCE=β,∴∠DCF=∠DCE﹣∠ECF=β﹣γ,∴∠EFC=β﹣γ,∵∠BFC=∠BCF,∴∠BFC=∠BCE+∠ECF=γ+β,∴∠ABF=∠BFE=2γ,∵∠FBG=2∠ECF,∴∠FBG=2γ,∴∠ABE+∠DCE=∠BEC=90°,∴∠ABE=90°﹣β,∴∠GBE=∠ABE﹣∠ABF﹣∠FBG=90°﹣β﹣2γ﹣2γ,∵BE平分∠ABC,∴∠CBE=∠ABE=90°﹣β,∴∠CBG=∠CBE+∠GBE,∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ,整理得:2γ+β=55°,∴∠FBE=∠FBG+∠GBE=2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°.【点睛】本题主要考查平行线的性质,解决本题的关键是根据平行线的性质解答.22.(1)见解析;(2);(3)75°【分析】(1)根据平行线的性质、余角和补角的性质即可求解.(2)根据平行线的性质、对顶角的性质和平角的定义解答即可.(3)根据平行线的性质和角平分线的定义以及三角形内角和解答即可.【详解】解:(1)∠C=∠1+∠2,证明:过C作l∥MN,如下图所示,∵l∥MN,∴∠4=∠2(两直线平行,内错角相等),∵l∥MN,PQ∥MN,∴l∥PQ,∴∠3=∠1(两直线平行,内错角相等),∴∠3+∠4=∠1+∠2,∴∠C=∠1+∠2;(2)∵∠BDF=∠GDF,∵∠BDF=∠PDC,∴∠GDF=∠PDC,∵∠PDC+∠CDG+∠GDF=180°,∴∠CDG+2∠PDC=180°,∴∠PDC=90°-∠CDG,由(1)可得,∠PDC+∠CEM=∠C=90°,∴∠AEN=∠CEM,∴,(3)设BD交MN于J.∵BC平分∠PBD,AM平分∠CAD,∠PBC=25°,∴∠PBD=2∠PBC=50°,∠CAM=∠MAD,∵PQ∥MN,∴∠BJA=∠PBD=50°,∴∠ADB=∠AJB-∠JAD=50°-∠JAD=50°-∠CAM,由(1)可得,∠ACB=∠PBC+∠CAM,∴∠ACB+∠ADB=∠PBC+∠CAM+50°-∠CAM=25°+50°=75°.【点睛】本题考查了平行线的性质、余角和补角的性质,解题的关键是根据平行找出角度之间的关系.23.(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=25°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=65°;(3)设∠EGC=4x,∠EFC=3x,则∠GCF=4x-3x=x,分两种情况讨论:①当点G、F在点E的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.【详解】解:(1)∵∠CEB=100°,AB∥CD,∴∠ECQ=80°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=40°;(2)∵AB∥CD∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,∴∠EGC+∠ECG=80°,又∵∠EGC-∠ECG=30°,∴∠EGC=55°,∠ECG=25°,∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=(80°-50°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=65°;(3)设∠EGC=4x,∠EFC=3x,则∠GCF=∠FCD=4x-3x=x,①当点G、F在点E的右侧时,则∠ECG=x,∠PCF=∠PCD=x,∵∠ECD=80°,∴x+x+x+x=80°,解得x=16°,∴∠CPQ=∠ECP=x+x+x=56°;②当点G、F在点E的左侧时,则∠ECG=∠GCF=x,∵∠CGF=180°-4x,∠GCQ=80°+x,∴180°-4x=80°+x,解得x=20°,∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,∴∠PCQ=∠FCQ=60°,∴∠CPQ=∠ECP=80°-60°=20°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.24.(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD.【分析】(1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,进而可得∠BED=∠ABE+∠CDE;(2)图2中,根据∠ABE的平分线与∠CDE的平分线相交于点F,结合(1)的结论即可说明:∠BED=2∠BFD;(3)图3中,根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合(1)的结论即可说明∠BED与∠BFD之间的数量关系.【详解】解:(1)如图1中,过点E作EG∥AB,则∠BEG=∠ABE,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,所以∠BEG+∠DEG=∠ABE+∠CDE,即∠BED=∠ABE+∠CDE;(2)图2中,因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),由(1)得:因为AB∥CD,所以∠BED=∠ABE+∠CDE,∠BFD=∠ABF+∠CDF,所以∠BED=2∠BFD.(3)∠BED=360°-2∠BFD.图3中,过点E作EG∥AB,则∠BE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商品房房屋买卖的合同范本
- 鸡苗购销合同样本
- 海量塘堰承包合同范文专业版
- 区间合作协议完整版
- 基于二零二四年标准的智能穿戴设备生产合同
- 铝扣板材料供应与安装2024年度合同
- 2024年度股权质押与市场推广服务合同3篇
- 2024年度特许经营合同标的的市场准入2篇
- 2024至2030年中国裙边电子称带数据监测研究报告
- 钢筋工程合同中的违约责任与赔偿2024
- 出师表课堂实录余映潮 出师表.课堂实录
- 生态系统的结构
- 外贸职业访谈报告
- 羽毛球基本步法
- NY-T 4255-2022 规模化孵化场设施装备配置技术规范
- TWSJD 32-2023 胸部CT辅助诊断尘肺病技术指南
- 流行性腮腺炎 流行性腮腺炎
- 民法典普法讲座-物权编 PPT
- 事故报告和调查处理全套表格
- GB/T 32294-2015锻制承插焊和螺纹活接头
- 振动筛计算过程详细参考
评论
0/150
提交评论