四川省内江市威远中学2025届高二数学第一学期期末调研模拟试题含解析_第1页
四川省内江市威远中学2025届高二数学第一学期期末调研模拟试题含解析_第2页
四川省内江市威远中学2025届高二数学第一学期期末调研模拟试题含解析_第3页
四川省内江市威远中学2025届高二数学第一学期期末调研模拟试题含解析_第4页
四川省内江市威远中学2025届高二数学第一学期期末调研模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省内江市威远中学2025届高二数学第一学期期末调研模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是数列的前项和,,则数列是()A.公比为3的等比数列 B.公差为3的等差数列C.公比为的等比数列 D.既非等差数列,也非等比数列2.下列函数的求导正确的是()A. B.C. D.3.抛物线的准线方程为()A B.C. D.4.已知数列{}满足,且,若,则=()A.-8 B.-11C.8 D.115.已知抛物线的焦点为F,,点是抛物线上的动点,则当的值最小时,=()A.1 B.2C. D.46.甲、乙两组数的数据如茎叶图所示,则甲、乙的平均数、方差、极差及中位数中相同的是()A.极差 B.方差C.平均数 D.中位数7.已知数列满足,且,,则()A. B.C. D.8.已知双曲线C:(,)的一条渐近线被圆所截得的弦长为2,的C的离心率为()A. B.C.2 D.9.已知梯形ABCD中,,,且对角线交于点E,过点E作与AB所在直线的平行线l.若AB和CD所在直线的方程分别是与,则直线l与CD所在直线的距离为()A.1 B.2C.3 D.410.双曲线的两个焦点坐标是()A.和 B.和C.和 D.和11.过点的直线与圆相切,则直线的方程为()A.或 B.或C.或 D.或12.某商场为了解销售活动中某商品销售量与活动时间之间的关系,随机统计了某次销售活动中的商品销售量与活动时间,并制作了下表:活动时间销售量由表中数据可知,销售量与活动时间之间具有线性相关关系,算得线性回归方程为,据此模型预测当时,的值为()A B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若双曲线的渐近线为,则其离心率的值为_______.14.阿基米德(公元前287—公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.已知椭圆经过点,则当取得最大值时,椭圆的面积为_________15.在中.若成公比为的等比数列,则____________16.已知两平行直线与间的距离为3,则C的值是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的左、右焦点分别为,,椭圆上一点满足,且的面积为(1)求椭圆的方程;(2)直线与椭圆有且只有一个公共点,过点作直线的垂线.设直线交轴于,交轴于,且点,求的轨迹方程18.(12分)已知数列和满足,(1)若,求的通项公式;(2)若,,证明为等差数列,并求和的通项公式19.(12分)设函数(1)若在处取得极值,求a的值;(2)若在上单调递减,求a的取值范围20.(12分)已知抛物线的焦点F到准线的距离为2(1)求C的方程;(2)已知O为坐标原点,点P在C上,点Q满足,求直线斜率最大值.21.(12分)已知函数(1)当时,求的单调区间;(2)当时,证明:存在最大值,且恒成立.22.(10分)在四棱锥中,平面,,,,,分别是的中点.(1)求证:平面;(2)求证:平面;(3)求直线与平面所成角的正弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由得,然后利用与的关系即可求出【详解】因为,所以所以当时,时,所以故数列既非等差数列,也非等比数列故选:D【点睛】要注意由求要分两步:1.时,2.时.2、B【解析】对各个选项进行导数运算验证即可.【详解】,故A错误;,故B正确;,故C错误;,故D错误.故选:B3、D【解析】根据抛物线方程求出,进而可得焦点坐标以及准线方程.【详解】由可得,所以焦点坐标为,准线方程为:,故选:D.4、C【解析】利用递推关系,结合取值,求得即可.【详解】因为,且,,故可得,解得(舍),;同理求得,,.故选:C.5、B【解析】根据抛物线定义,转化,要使有最小值,只需最大,即直线与抛物线相切,联立直线方程与抛物线方程,求出斜率,然后求出点坐标,即可求解.【详解】由题知,抛物线的准线方程为,,过P作垂直于准线于,连接,由抛物线定义知.由正弦函数知,要使最小值,即最小,即最大,即直线斜率最大,即直线与抛物线相切.设所在的直线方程为:,联立抛物线方程:,整理得:则,解得即,解得,代入得或,再利用焦半径公式得故选:B.关键点睛:本题考查抛物线的性质,直线与抛物线的位置关系,解题的关键是要将取最小值转化为直线斜率最大,再转化为抛物线的切线,考查学生的转化思想与运算求解能力,属于中档题.6、C【解析】根据茎叶图中数据的波动情况,可直接判断方差不同;根据茎叶图中的数据,分别计算极差、中位数、平均数,即可得出结果.【详解】由茎叶图可得:甲的数据更集中,乙的数据较分散,所以甲与乙的方差不同;甲的极差为;乙的极差为,所以甲与乙的极差不同;甲的中位数为,乙的中位数为,所以中位数不同;甲的平均数为,乙的平均数为,所以甲、乙的平均数相同;故选:C.7、A【解析】由已知两个不等式,利用“两边夹”思想求得,然后利用累加法可求得【详解】∵,∴,∴,又,∴,即,∴故选:A【点睛】本题考查数列的递推式,由递推式的特征,采用累加法求得数列的项.解题关键是利用“两边夹”思想求解8、C【解析】由双曲线的方程可得渐近线的直线方程,根据直线和圆相交弦长可得圆心到直线的距离,进而可得,结合,可得离心率.【详解】双曲线的一条渐近线方程为,即,被圆所截得的弦长为2,所以圆心到直线的距离为,,解得,故选:C【点睛】本题考查了双曲线的渐近线和离心率、直线和圆的相交弦、点到直线距离等基本知识,考查了运算求解能力和逻辑推理能力,转化的数学思想,属于一般题目.9、B【解析】先求得直线AB和CD之间的距离,再求直线l与CD所在直线的距离即可解决.【详解】梯形ABCD中,,,且对角线交于点E,则有△与△相似,相似比为,则,点E到CD所在直线的距离为AB和CD所在直线距离的又AB和CD所在直线的距离为,则直线l与CD所在直线的距离为2故选:B10、C【解析】由双曲线标准方程可得到焦点所在轴及半焦距的长,进而得到两个焦点坐标.【详解】双曲线中,,则又双曲线焦点在y轴,故双曲线的两个焦点坐标是和故选:C11、D【解析】根据斜率存在和不存在分类讨论,斜率存在时设直线方程,由圆心到直线距离等于半径求解【详解】圆心为,半径为2,斜率不存在时,直线满足题意,斜率存在时,设直线方程为,即,由,得,直线方程为,即故选:D12、C【解析】求出样本中心点的坐标,代入回归直线方程,求出的值,再将代入回归方程即可得解.【详解】由表格中的数据可得,,将样本中心点的坐标代入回归直线方程可得,解得,所以,回归直线方程为,故当时,.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用渐近线斜率为和双曲线的关系可构造关于的齐次方程,进而求得结果.【详解】由渐近线方程可知:,即,,,(负值舍掉).故答案为:.【点睛】本题考查根据双曲线渐近线方程求解离心率的问题,关键是利用渐进线的斜率构造关于的齐次方程.14、【解析】利用基本不等式得出取得最大值时的条件结合可知,再利用点在椭圆方程上,故可求得、的值,进而求出椭圆的面积.详解】由基本不等式可得,当且仅当时取得最大值,由可知,∵椭圆经过点,∴,解得,,则椭圆的面积为.故答案为:.15、【解析】由条件可得,即,由余弦定理可得答案.【详解】由成公比为的等比数列,即由正弦定理可知所以故答案为:16、【解析】根据两条平行直线之间的距离公式即可得解.【详解】两平行直线与间的距离为3,所以,所以故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)利用可得,由椭圆关系可求得,进而得到椭圆方程;(2)将与椭圆方程联立可得,得,结合韦达定理可确定点坐标,由此可得方程,进而得到,化简整理即可得到所求轨迹方程.【小问1详解】由焦点坐标可知:;,即,,,解得:,,解得:(舍)或,,椭圆的方程为:;【小问2详解】由得:,,整理可得:;,解得:,,则,令,解得:;令,解得:;,即,又,,则的轨迹方程为:.【点睛】思路点睛:本题考查动点轨迹方程的求解问题,解题基本思路是能够利用变量表示出所求点的坐标,根据坐标之间关系,化简整理消掉变量得到所求轨迹方程;易错点是忽略题目中的限制条件,轨迹中出现多余的点.18、(1)(2)证明见解析,,【解析】(1)代入可得,变形得构造等比数列求的通项公式;(2)先由已知得,先分别求出,的通项公式,然后合并可得的通项公式,进而可得的通项公式【小问1详解】当,时,,所以,即,整理得,所以是以为首项,为公比的等比数列故,即【小问2详解】当时,由,,得,所以因为,所以,则是以为首项,2为公差的等差数列,,;是以为首项,2为公差的等差数列,,综上所述,所以,,故是以2为首项,1为公差的等差数列当时,,且满足,所以19、(1)(2)【解析】(1)对求导,再根据题意有,据此列式求出;(2)由题可知对恒成立,即对恒成立,因此求出在区间上的最小值即可得出结论.【详解】(1),则,因为在处取得极值,所以,解得,经检验,当时,在处取得极值;(2)因为在上单调递减,所以对恒成立,则对恒成立,∵当时,,∴,即a的取值范围为.【点睛】本题主要考查利用函数的单调性与极值求参,需要学生对相关基础知识牢固掌握且灵活运用.20、(1);(2)最大值为.【解析】(1)由抛物线焦点与准线的距离即可得解;(2)设,由平面向量的知识可得,进而可得,再由斜率公式及基本不等式即可得解.【详解】(1)抛物线的焦点,准线方程为,由题意,该抛物线焦点到准线的距离为,所以该抛物线的方程为;(2)[方法一]:轨迹方程+基本不等式法设,则,所以,由在抛物线上可得,即,所以直线的斜率,当时,;当时,,当时,因为,此时,当且仅当,即时,等号成立;当时,;综上,直线斜率的最大值为.[方法二]:【最优解】轨迹方程+数形结合法同方法一得到点Q的轨迹方程为设直线的方程为,则当直线与抛物线相切时,其斜率k取到最值.联立得,其判别式,解得,所以直线斜率的最大值为[方法三]:轨迹方程+换元求最值法同方法一得点Q的轨迹方程为设直线的斜率为k,则令,则的对称轴为,所以.故直线斜率的最大值为[方法四]参数+基本不等式法由题可设因,所以于是,所以则直线的斜率为当且仅当,即,时等号成立,所以直线斜率的最大值为【整体点评】方法一根据向量关系,利用代点法求得Q的轨迹方程,得到直线OQ的斜率关于的表达式,然后利用分类讨论,结合基本不等式求得最大值;方法二同方法一得到点Q的轨迹方程,然后利用数形结合法,利用判别式求得直线OQ的斜率的最大值,为最优解;方法三同方法一求得Q的轨迹方程,得到直线的斜率k的平方关于的表达式,利用换元方法转化为二次函数求得最大值,进而得到直线斜率的最大值;方法四利用参数法,由题可设,求得x,y关于的参数表达式,得到直线的斜率关于的表达式,结合使用基本不等式,求得直线斜率的最大值.21、(1)的单增区间为,;单减区间为,,;(2)证明见解析.【解析】(1)先求出函数的定义域,求出,由,结合函数的定义域可得出函数的单调区间.(2)当时,定义域R,求出,从而得出单调区间,由当时,,当时,,以及极值点与2的大小关系可得出当时,函数有最大值,然后再证明即可.【详解】解:(1)定义域,可得且且,,可得且3无0无0减无减增无增减所以,的单增区间为,;单减区间为,,.(2)当时,定义域R因为,当时,,当时,,所以的最大值在时取得;由,即,得由,得,或由,得所以在上单调递减,在上单调递增,在上单调递减.当时,,且,由所以当时,函数有最大值.所以,因为,所以,设,则所以化为由,则,则,所以所以22、(1)证明见解析;(2)证明见解析;(3).

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论