版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省潮州市饶平县饶平二中2025届高一上数学期末监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并构成一般不动点定理的基石,布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔(L.E.J.Brouwer),简单的讲就是对于满足一定条件的连续函数,存在点,使得,那么我们称该函数为“不动点”函数,下列为“不动点”函数的是()A. B.C. D.2.长方体中,,,E为中点,则异面直线与CE所成角为()A. B.C. D.3.已知函数与的图象关于轴对称,当函数和在区间同时递增或同时递减时,把区间叫做函数的“不动区间”.若区间为函数的“不动区间”,则实数的取值范围是A. B.C. D.4.下列函数在定义域内为奇函数,且有最小值的是A. B.C. D.5.已知函数,若有且仅有两个不同实数,,使得则实数的值不可能为A. B.C. D.6.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行两步恰竿齐,五尺板高离地……”某教师根据这首词设计一题:如图,已知,,则弧的长()A. B.C. D.7.下列函数中,满足对定义域内任意实数,恒有的函数的个数为()①②③④A.1个 B.2个C.3个 D.4个8.如图,一质点在半径为1的圆O上以点为起点,按顺时针方向做匀速圆周运动,角速度为,5s时到达点,则()A.-1 B.C. D.9.已知三棱锥的三条棱,,长分别是3、4、5,三条棱,,两两垂直,且该棱锥4个顶点都在同一球面上,则这个球的表面积是A B.C. D.都不对10.一正方体的六个面上用记号笔分别标记了一个字,已知其表面展开图如图所示,则在原正方体中,互为对面的是()A.西与楼,梦与游,红与记B.西与红,楼与游,梦与记C.西与楼,梦与记,红与游D.西与红,楼与记,梦与游二、填空题:本大题共6小题,每小题5分,共30分。11.过点P(4,2)并且在两坐标轴上截距相等的直线方程为(化为一般式)________.12.设函数f(x)的定义域为R,f(x+1)为奇函数,f(x+2)为偶函数,当x∈[1,2]时,f(x)=ax2+b.若f(0)+f(3)=6,则f()=____________.13.集合,用列举法可以表示为_________14.已知在区间上单调递减,则实数的取值范围是____________.15.已知函数①当a=1时,函数的值域是___________;②若函数的图像与直线y=1只有一个公共点,则实数a的取值范围是___________16.已知f(x)=mx3-nx+1(m,n∈R),若f(-a)=3,则f(a)=______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.若函数对任意,恒有(1)指出的奇偶性,并给予证明;(2)如果时,,判断的单调性;(3)在(2)的条件下,若对任意实数x,恒有.成立,求k的取值范围18.已知函数.(1)求,的值;(2)在给定的坐标系中,画出的图象(不必列表);(3)若关于的方程恰有3个不相等的实数解,求实数的取值范围.19.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用,现有一个筒车按逆时针方向匀速转动.每分钟转动5圈,如图,将该简车抽象为圆O,筒车上的盛水桶抽象为圆O上的点P,已知圆O的半径为,圆心O距离水面,且当圆O上点P从水中浮现时(图中点)开始计算时间(1)根据如图所示的直角坐标系,将点P到水面的距离h(单位:m,在水面下,h为负数)表示为时间t(单位:s)的函数,并求时,点P到水面的距离;(2)在点P从开始转动的一圈内,点P到水面的距离不低于的时间有多长?20.已知是定义在上的奇函数,当时,(1)求的解析式;(2)求不等式的解集.21.已知函数,当点在的图像上移动时,点在函数的图像上移动,(1)若点的坐标为,点也在图像上,求的值(2)求函数的解析式(3)当,令,求在上的最值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据已知定义,将问题转化为方程有解,然后逐项进行求解并判断即可.【详解】根据定义可知:若有不动点,则有解.A.令,所以,此时无解,故不是“不动点”函数;B.令,此时无解,,所以不是“不动点”函数;C.当时,令,所以或,所以“不动点”函数;D.令即,此时无解,所以不是“不动点”函数.故选:C.2、C【解析】以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出异面直线与所成角【详解】解:长方体中,,,为中点,以为原点,为轴,为轴,为轴,建立空间直角坐标系,,,,,,,,设异面直线与所成角为,则,,异面直线与所成角为故选:【点睛】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题3、C【解析】若区间[1,2]为函数f(x)=|2x﹣t|的“不动区间”,则函数f(x)=|2x﹣t|和函数F(x)=|﹣t|在[1,2]上单调性相同,则(2x﹣t)(2﹣x﹣t)≤0在[1,2]上恒成立,进而得到答案【详解】∵函数y=f(x)与y=F(x)的图象关于y轴对称,∴F(x)=f(﹣x)=|2﹣x﹣t|,∵区间[1,2]为函数f(x)=|2x﹣t|的“不动区间”,∴函数f(x)=|2x﹣t|和函数F(x)=|2﹣x﹣t|在[1,2]上单调性相同,∵y=2x﹣t和函数y=2﹣x﹣t的单调性相反,∴(2x﹣t)(2﹣x﹣t)≤0在[1,2]上恒成立,即1﹣t(2x+2﹣x)+t2≤0在[1,2]上恒成立,即2﹣x≤t≤2x在[1,2]上恒成立,即≤t≤2,故答案为:C【点睛】(1)本题主要考查不动点定义及利用定义解答数学问题的能力,考查指数函数的图像和性质,考查不等式的恒成立问题,意在考查学生对这些知识的掌握水平和分析推理能力.(2)正确理解不动区间的定义,得到(2x﹣t)(2﹣x﹣t)≤0在[1,2]上恒成立,是解答的关键4、D【解析】选项A中,函数为奇函数,但无最小值,故满足题意选项B中,函数为偶函数,不合题意选项C中,函数为奇函数,但无最小值,故不合题意选项D中,函数,为奇函数,且有最小值,符合题意选D5、D【解析】利用辅助角公式化简,由,可得,根据在上有且仅有两个最大值,可求解实数的范围,从而可得结果【详解】函数;由,可得,因为有且仅有两个不同的实数,,使得所以在上有且仅有两个最大值,因为,,则;所以实数的值不可能为,故选D【点睛】本题主要考查辅助角公式的应用、三角函数的图象与性质的应用问题,也考查了数形结合思想,意在考查综合应用所学知识解答问题的能力,属于基础题6、C【解析】求出长后可得,再由弧长公式计算可得【详解】由题意,解得,所以,,所以弧的长为故选:C7、A【解析】根据因为函数满足对定义域内任意实数,恒有,可得函数的图象是“下凸”,然后由函数图象判断.【详解】因为函数满足对定义域内任意实数,恒有,所以函数的图象是“下凸”,分别作出函数①②③④的图象,由图象知,满足条件的函数有③一个,故选:A8、C【解析】由正弦、余弦函数的定义以及诱导公式得出.【详解】设单位圆与轴正半轴的交点为,则,所以,,故.故选:C9、B【解析】长方体的一个顶点上的三条棱分别为,且它的八个顶点都在同一个球面上,则长方体的对角线就是球的直径,长方体的对角线为球的半径为则这个球的表面积为故选点睛:本题考查的是球的体积和表面积以及球内接多面体的知识点.由题意长方体的外接球的直径就是长方体的对角线,求出长方体的对角线,就是求出球的直径,然后求出球的表面积即可10、B【解析】将该正方体折叠,即可判断对立面的字.【详解】以红为底,折叠正方体后,即可判断出:西与红,楼与游,梦与记互为对面.故选:B【点睛】本题考查了空间正方体的结构特征,展开图与正方体关系,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、或【解析】根据直线在两坐标轴上截距相等,则截距可能为也可能不为,再结合直线方程求法,即可对本题求解【详解】由题意,设直线在两坐标轴上的截距均为,当时,设直线方程为:,因为直线过点,所以,即,所以直线方程为:,即:,当时,直线过点,且又过点,所以直线的方程为,即:,综上,直线的方程为:或.故答案为:或【点睛】本题考查直线方程的求解,考查能力辨析能力,应特别注意,截距相等,要分截距均为和均不为两种情况分别讨论.12、【解析】由f(x+1)为奇函数,f(x+2)为偶函数,可得,,再结合已知的解析式可得,然后结合已知可求出,从而可得当时,,进而是结合前面的式子可求得答案【详解】因为f(x+1)为奇函数,所以的图象关于点对称,所以,且因为f(x+2)为偶函数,所以的图象关于直线对称,,所以,即,所以,即,当x∈[1,2]时,f(x)=ax2+b,则,因为,所以,得,因为,所以,所以当时,,所以,故答案为:13、##【解析】根据集合元素属性特征进行求解即可.【详解】因为,所以,可得,因为,所以,集合故答案为:14、【解析】根据复合函数单调性的判断方法,结合对数函数的定义域,即可求得的取值范围.【详解】在区间上单调递减由对数部分为单调递减,且整个函数单调递减可知在上单调递增,且满足所以,解不等式组可得即满足条件的取值范围为故答案为:【点睛】本题考查了复合函数单调性的应用,二次函数的单调性,对数函数的性质,属于中档题.15、①.(-∞,1]②.(-1,1]【解析】①分段求值域,再求并集可得的值域;②转化为=在上与直线只有一个公共点,分离a求值域可得实数a的取值范围【详解】①当a=1时,即当x≤1时,,当x>1时,,综上所述当a=1时,函数的值域是,②由无解,故=在上与直线只有一个公共点,则有一个零点,即实数的取值范围是.故答案为:;.16、【解析】直接证出函数奇偶性,再利用奇偶性得解【详解】由题意得,所以,所以为奇函数,所以,所以【点睛】本题是函数中的给值求值问题,一般都是利用函数的周期性和奇偶性把未知的值转化到已知值上,若给点函数为非系非偶函数可试着构造一个新函数为奇偶函数从而求解三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)奇函数,证明见解析;(2)在R上单调递减,证明见解析;(3)【解析】(1)利用赋值法求出,根据函数奇偶性定义即可证明;(2)根据函数单调性定义即判断函数的单调性;(3)结合函数的奇偶性和单调性,将不等式进行等价转化,即可得到结论【详解】(1)为奇函数;证明:令,得,解得:令,则,所以函数为奇函数;(2)在R上单调递减;证明:任意取,且,则,又,即所以在R上单调递减;(3)对任意实数x,恒有等价于成立又在R上单调递减,即对任意实数x,恒成立,当时,即时,不恒成立;当时,即时,则,解得:所以实数k的取值范围为【点睛】方法点睛:本题考查函数的单调性、奇偶性及含参不等式的解法,要设法把隐性转化为显性,方法是:(1)把不等式转化为的模型;(2)判断的单调性,再根据函数的单调性将“”脱掉,得到具体的不等式组来求解,但注意奇偶函数的区别.18、(1),(2)图象见解析(3)【解析】(1)由函数解析式直接代入求解;(2)根据函数解析式及函数的性质画出图象;(3)利用数形结合的方法可求解.【小问1详解】由解析可得:,因,所以.【小问2详解】函数的图象如下:【小问3详解】方程有3个不相等的实数解等价于函数的图象与的图象有三个交点,结合(2)中的图象可得的取值范围为.19、(1),m(2)4s【解析】(1)根据题意先求出筒车转动的角速度,从而求出h关于时间t的函数,和时的函数值;(2)先确定定义域,再求解不等式,得到,从而求出答案.【小问1详解】筒车按逆时针方向匀速转动.每分钟转动5圈,故筒车每秒转动的角速度为,故,当时,,故点P到水面的距离为m【小问2详解】点P从开始转动的一圈,所用时间,令,其中,解得:,则,故点P到水面的距离不低于的时间为4s.20、(1)(2).【解析】(1)当时,,利用,结合条件及可得解;(2)分析可得在上递增,进而得,从而得解.【详解】(1)当时,,则,为上的奇函数,且,;(2)因为当时,,所以在上递增,当时,,所以在上递增,所以在上递增,因为,所以由可得,所以不等式的解集为21、(1);(2);(3)见解析【解析】(1)首先可通过点坐标得出点的坐标,然后通过点也在图像上即可得出的值;(2)首先可以设出点的坐标为,然后得到与、与的关系,最后
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 三年级英语教学计划模板
- 体育教研工作计划模板汇编
- 初一上学期班主任工作计划024年
- 2025年社区关爱残疾人工作计划模板新编
- 学校档案管理年度工作计划范文
- 计划标段生产建议计划
- 初一学期的班级工作计划
- 《食品风险分析框架》课件
- 《骨科常规护理技术》课件
- 土地承包合同中粮食补贴协议备注书面书写
- 2024-2030年生命科学中的工业自动化行业市场现状供需分析及投资评估规划分析研究报告
- 2024年江苏苏州市事业单位专业化青年人才定岗特选444人历年高频500题难、易错点模拟试题附带答案详解
- Unit3 Amazing Animals(教学设计)-2024-2025学年人教PEP(2024)三年级上册
- 一年级心理健康课件生命真美好苏科版
- GB/T 44460-2024消费品质量分级导则卫生洁具
- 2024合同模板合伙开公司合同
- 2024年山东省水利水电工程施工企业安全生产管理三类人员C证考试题库(含答案)
- 冀教版数学五年级上册7.2 综合与实践 估算玉米收入
- 安全先进个人事迹材料(7篇)
- DL∕T 523-2017 化学清洗缓蚀剂应用性能评价指标及试验方法
- 服饰品牌解析智慧树知到期末考试答案章节答案2024年上海工程技术大学
评论
0/150
提交评论