版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省广州市荔湾区真光中学高三第一次学情调查数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图是一个几何体的三视图,则该几何体的体积为()A. B. C. D.2.已知是圆心为坐标原点,半径为1的圆上的任意一点,将射线绕点逆时针旋转到交圆于点,则的最大值为()A.3 B.2 C. D.3.已知集合,,,则()A. B. C. D.4.如图,正三棱柱各条棱的长度均相等,为的中点,分别是线段和线段的动点(含端点),且满足,当运动时,下列结论中不正确的是A.在内总存在与平面平行的线段B.平面平面C.三棱锥的体积为定值D.可能为直角三角形5.的展开式中的系数是-10,则实数()A.2 B.1 C.-1 D.-26.已知定点,,是圆上的任意一点,点关于点的对称点为,线段的垂直平分线与直线相交于点,则点的轨迹是()A.椭圆 B.双曲线 C.抛物线 D.圆7.已知条件,条件直线与直线平行,则是的()A.充要条件 B.必要不充分条件 C.充分不必要条件 D.既不充分也不必要条件8.()A. B. C. D.9.袋中装有标号为1,2,3,4,5,6且大小相同的6个小球,从袋子中一次性摸出两个球,记下号码并放回,如果两个号码的和是3的倍数,则获奖,若有5人参与摸球,则恰好2人获奖的概率是()A. B. C. D.10.执行如图所示的程序框图后,输出的值为5,则的取值范围是().A. B. C. D.11.已知直线:与圆:交于,两点,与平行的直线与圆交于,两点,且与的面积相等,给出下列直线:①,②,③,④.其中满足条件的所有直线的编号有()A.①② B.①④ C.②③ D.①②④12.设,,分别是中,,所对边的边长,则直线与的位置关系是()A.平行 B.重合C.垂直 D.相交但不垂直二、填空题:本题共4小题,每小题5分,共20分。13.在长方体中,,,,为的中点,则点到平面的距离是______.14.已知椭圆与双曲线有相同的焦点、,其中为左焦点.点为两曲线在第一象限的交点,、分别为曲线、的离心率,若是以为底边的等腰三角形,则的取值范围为________.15.的展开式中的系数为________.16.若向量满足,则实数的取值范围是____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,.(1)解;(2)若,证明:.18.(12分)在多面体中,四边形是正方形,平面,,,为的中点.(1)求证:;(2)求平面与平面所成角的正弦值.19.(12分)如图,湖中有一个半径为千米的圆形小岛,岸边点与小岛圆心相距千米,为方便游人到小岛观光,从点向小岛建三段栈道,,,湖面上的点在线段上,且,均与圆相切,切点分别为,,其中栈道,,和小岛在同一个平面上.沿圆的优弧(圆上实线部分)上再修建栈道.记为.用表示栈道的总长度,并确定的取值范围;求当为何值时,栈道总长度最短.20.(12分)如图,在四棱锥中,底面为菱形,为正三角形,平面平面分别是的中点.(1)证明:平面(2)若,求二面角的余弦值.21.(12分)已知椭圆的左、右焦点分别为、,点在椭圆上,且.(Ⅰ)求椭圆的标准方程;(Ⅱ)设直线与椭圆相交于、两点,与圆相交于、两点,求的取值范围.22.(10分)某中学的甲、乙、丙三名同学参加高校自主招生考试,每位同学彼此独立的从五所高校中任选2所.(1)求甲、乙、丙三名同学都选高校的概率;(2)若已知甲同学特别喜欢高校,他必选校,另在四校中再随机选1所;而同学乙和丙对五所高校没有偏爱,因此他们每人在五所高校中随机选2所.(i)求甲同学选高校且乙、丙都未选高校的概率;(ii)记为甲、乙、丙三名同学中选高校的人数,求随机变量的分布列及数学期望.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
根据三视图可得几何体为直三棱柱,根据三视图中的数据直接利用公式可求体积.【详解】由三视图可知几何体为直三棱柱,直观图如图所示:其中,底面为直角三角形,,,高为.∴该几何体的体积为故选:A.【点睛】本题考查三视图及棱柱的体积,属于基础题.2、C【解析】
设射线OA与x轴正向所成的角为,由三角函数的定义得,,,利用辅助角公式计算即可.【详解】设射线OA与x轴正向所成的角为,由已知,,,所以,当时,取得等号.故选:C.【点睛】本题考查正弦型函数的最值问题,涉及到三角函数的定义、辅助角公式等知识,是一道容易题.3、D【解析】
根据集合的基本运算即可求解.【详解】解:,,,则故选:D.【点睛】本题主要考查集合的基本运算,属于基础题.4、D【解析】
A项用平行于平面ABC的平面与平面MDN相交,则交线与平面ABC平行;B项利用线面垂直的判定定理;C项三棱锥与三棱锥体积相等,三棱锥的底面积是定值,高也是定值,则体积是定值;D项用反证法说明三角形DMN不可能是直角三角形.【详解】A项,用平行于平面ABC的平面截平面MND,则交线平行于平面ABC,故正确;B项,如图:当M、N分别在BB1、CC1上运动时,若满足BM=CN,则线段MN必过正方形BCC1B1的中心O,由DO垂直于平面BCC1B1可得平面平面,故正确;C项,当M、N分别在BB1、CC1上运动时,△A1DM的面积不变,N到平面A1DM的距离不变,所以棱锥N-A1DM的体积不变,即三棱锥A1-DMN的体积为定值,故正确;D项,若△DMN为直角三角形,则必是以∠MDN为直角的直角三角形,但MN的最大值为BC1,而此时DM,DN的长大于BB1,所以△DMN不可能为直角三角形,故错误.故选D【点睛】本题考查了命题真假判断、棱柱的结构特征、空间想象力和思维能力,意在考查对线面、面面平行、垂直的判定和性质的应用,是中档题.5、C【解析】
利用通项公式找到的系数,令其等于-10即可.【详解】二项式展开式的通项为,令,得,则,所以,解得.故选:C【点睛】本题考查求二项展开式中特定项的系数,考查学生的运算求解能力,是一道容易题.6、B【解析】
根据线段垂直平分线的性质,结合三角形中位线定理、圆锥曲线和圆的定义进行判断即可.【详解】因为线段的垂直平分线与直线相交于点,如下图所示:所以有,而是中点,连接,故,因此当在如下图所示位置时有,所以有,而是中点,连接,故,因此,综上所述:有,所以点的轨迹是双曲线.故选:B【点睛】本题考查了双曲线的定义,考查了数学运算能力和推理论证能力,考查了分类讨论思想.7、C【解析】
先根据直线与直线平行确定的值,进而即可确定结果.【详解】因为直线与直线平行,所以,解得或;即或;所以由能推出;不能推出;即是的充分不必要条件.故选C【点睛】本题主要考查充分条件和必要条件的判定,熟记概念即可,属于基础题型.8、D【解析】
利用,根据诱导公式进行化简,可得,然后利用两角差的正弦定理,可得结果.【详解】由所以,所以原式所以原式故故选:D【点睛】本题考查诱导公式以及两角差的正弦公式,关键在于掌握公式,属基础题.9、C【解析】
先确定摸一次中奖的概率,5个人摸奖,相当于发生5次试验,根据每一次发生的概率,利用独立重复试验的公式得到结果.【详解】从6个球中摸出2个,共有种结果,两个球的号码之和是3的倍数,共有摸一次中奖的概率是,5个人摸奖,相当于发生5次试验,且每一次发生的概率是,有5人参与摸奖,恰好有2人获奖的概率是,故选:.【点睛】本题主要考查了次独立重复试验中恰好发生次的概率,考查独立重复试验的概率,解题时主要是看清摸奖5次,相当于做了5次独立重复试验,利用公式做出结果,属于中档题.10、C【解析】
框图的功能是求等比数列的和,直到和不满足给定的值时,退出循环,输出n.【详解】第一次循环:;第二次循环:;第三次循环:;第四次循环:;此时满足输出结果,故.故选:C.【点睛】本题考查程序框图的应用,建议数据比较小时,可以一步一步的书写,防止错误,是一道容易题.11、D【解析】
求出圆心到直线的距离为:,得出,根据条件得出到直线的距离或时满足条件,即可得出答案.【详解】解:由已知可得:圆:的圆心为(0,0),半径为2,则圆心到直线的距离为:,∴,而,与的面积相等,∴或,即到直线的距离或时满足条件,根据点到直线距离可知,①②④满足条件.故选:D.【点睛】本题考查直线与圆的位置关系的应用,涉及点到直线的距离公式.12、C【解析】试题分析:由已知直线的斜率为,直线的斜率为,又由正弦定理得,故,两直线垂直考点:直线与直线的位置关系二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
利用等体积法求解点到平面的距离【详解】由题在长方体中,,,所以,所以,设点到平面的距离为,解得故答案为:【点睛】此题考查求点到平面的距离,通过在三棱锥中利用等体积法求解,关键在于合理变换三棱锥的顶点.14、【解析】
设,由椭圆和双曲线的定义得到,根据是以为底边的等腰三角形,得到,从而有,根据,得到,再利用导数法求的范围.【详解】设,由椭圆的定义得,由双曲线的定义得,所以,因为是以为底边的等腰三角形,所以,即,因为,所以,因为,所以,所以,即,而,因为,所以在上递增,所以.故答案为:【点睛】本题主要考查椭圆,双曲线的定义和几何性质,还考查了运算求解的能力,属于中档题.15、80.【解析】
只需找到展开式中的项的系数即可.【详解】展开式的通项为,令,则,故的展开式中的系数为80.故答案为:80.【点睛】本题考查二项式定理的应用,涉及到展开式中的特殊项系数,考查学生的计算能力,是一道容易题.16、【解析】
根据题意计算,解得答案.【详解】,故,解得.故答案为:.【点睛】本题考查了向量的数量积,意在考查学生的计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析.【解析】
(1)在不等式两边平方化简转化为二次不等式,解此二次不等式即可得出结果;(2)利用绝对值三角不等式可证得成立.【详解】(1),,由得,不等式两边平方得,即,解得或.因此,不等式的解集为;(2),,由绝对值三角不等式可得.因此,.【点睛】本题考查含绝对值不等式的求解,同时也考查了利用绝对值三角不等式证明不等式,考查推理能力与运算求解能力,属于中等题.18、(1)证明见解析(2)【解析】
(1)首先证明,,,∴平面.即可得到平面,.(2)以为坐标原点,,,所在的直线分别为轴、轴、轴建立空间直角坐标系,分别求出平面和平面的法向量,带入公式求解即可.【详解】(1)∵平面,平面,∴.又∵四边形是正方形,∴.∵,∴平面.∵平面,∴.又∵,为的中点,∴.∵,∴平面.∵平面,∴.(2)∵平面,,∴平面.以为坐标原点,,,所在的直线分别为轴、轴、轴建立空间直角坐标系.如图所示:则,,,.∴,,.设为平面的法向量,则,得,令,则.由题意知为平面的一个法向量,∴,∴平面与平面所成角的正弦值为.【点睛】本题第一问考查线线垂直,先证线面垂直时解题关键,第二问考查二面角,建立空间直角坐标系是解题关键,属于中档题.19、,;当时,栈道总长度最短.【解析】
连,,由切线长定理知:,,,,即,,则,,进而确定的取值范围;根据求导得,利用增减性算出,进而求得取值.【详解】解:连,,由切线长定理知:,,,又,,故,则劣弧的长为,因此,优弧的长为,又,故,,即,,所以,,,则;,,其中,,-0+单调递减极小值单调递增故时,所以当时,栈道总长度最短.【点睛】本题主要考查导数在函数当中的应用,属于中档题.20、(1)详见解析;(2).【解析】
(1)连接,由菱形的性质以及中位线,得,由平面平面,且交线,得平面,故而,最后由线面垂直的判定得结论.(2)以为原点建平面直角坐标系,求出平面平与平面的法向量,,最后求得二面角的余弦值为.【详解】解:(1)连结∵,且是的中点,∴∵平面平面,平面平面,∴平面.∵平面,∴又为菱形,且为棱的中点,∴∴.又∵,平面∴平面.(2)由题意有,∵四边形为菱形,且∴分别以,,所在直线为轴,轴,轴建立如图所示的空间直角坐标系,设,则设平面的法向量为由,得,令,得取平面的法向量为∴二面角为锐二面角,∴二面角的余弦值为【点睛】处理线面垂直问题时,需要学生对线面垂直的判定定理特别熟悉,运用几何语言表示出来方才过关,一定要在已知平面中找两条相交直线与平面外的直线垂直,才可以证得线面垂直,其次考查了学生运用空间向量处理空间中的二面角问题,培养了学生的计算能力和空间想象力.21、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)利用勾股定理结合条件求得和,利用椭圆的定义求得的值,进而可得出,则椭圆的标准方程可求;(Ⅱ)设点、,将直线的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025总经理聘用合同
- 2025租赁合同:主机托管租用合同书
- 2025正规门面租房合同书
- 机械设备维修工基础知识
- 建设项目投资协议合同
- 中介劳务运作合同范例
- 拆房子重建合同范例
- 农村老宅修缮合同范例
- 产品制式合同范例
- 仓管员劳务合同范例
- 2024-2025学年统编版(2024)道德与法治小学一年级上册教学设计
- 医院医技科室与临床科室定期沟通制度
- 期中 (试题) -2024-2025学年人教PEP版(2024)英语三年级上册
- 律师事务所人员管理制度
- 渣土、余土运输服务方案(技术方案)
- 网络安全管理责任制度制度存在的问题(8篇)
- 20以内的加法口算练习题4000题 205
- 《网络系统建设与运维》课件-项目一 5G技术特点和网
- 渠道衬砌施工方案(渠道预制混凝土块)
- 篮球球星姚明课件
- 人生海海读书分享阅读时光好书读后感
评论
0/150
提交评论