2025届安徽省黄山市徽州中学高二上数学期末统考试题含解析_第1页
2025届安徽省黄山市徽州中学高二上数学期末统考试题含解析_第2页
2025届安徽省黄山市徽州中学高二上数学期末统考试题含解析_第3页
2025届安徽省黄山市徽州中学高二上数学期末统考试题含解析_第4页
2025届安徽省黄山市徽州中学高二上数学期末统考试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届安徽省黄山市徽州中学高二上数学期末统考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.古希腊数学家阿基米德利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积,已知椭圆的面积为,、分别是的两个焦点,过的直线交于、两点,若的周长为,则的离心率为()A. B.C. D.2.已知向量,,则向量等于()A.(3,1,-2) B.(3,-1,2)C.(3,-1,-2) D.(-3,-1,-2)3.已知矩形,为平面外一点,且平面,,分别为,上的点,且,,,则()A. B.C.1 D.4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为()A.8 B.16C. D.5.设各项均为正项的数列满足,,若,且数列的前项和为,则()A. B.C.5 D.66.过抛物线C:y2=4x的焦点F分别作斜率为k1、k2的直线l1、l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,若|k1·k2|=2,则|AB|+|DE|的最小值为()A.10 B.12C.14 D.167.19世纪法国著名数学家加斯帕尔·蒙日,创立了画法几何学,推动了空间几何学的独立发展,提出了著名的蒙日圆定理:椭圆的两条切线互相垂直,则切线的交点位于一个与椭圆同心的圆上,称为蒙日圆,且该圆的半径等于椭圆长半轴长与短半轴长的平方和的算术平方根.若圆与椭圆的蒙日圆有且仅有一个公共点,则b的值为()A. B.C. D.8.古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点A,B的距离之比为定值的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.在平面直角坐标系中,,点P满足,设点P的轨迹为C,下列结论正确的是()A.C的方程为B.当A,B,P三点不共线时,面积的最大值为24C.当A,B,P三点不共线时,射线是的角平分线D.在C上存在点M,使得9.如图是函数的导函数的图象,下列说法正确的是()A.函数在上是增函数B.函数在上是减函数C.是函数的极小值点D.是函数的极大值点10.已知数列的通项公式为,则“”是“数列为单调递增数列”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件11.已知两个向量,,且,则的值为()A.1 B.2C.4 D.812.甲、乙两组数的数据如茎叶图所示,则甲、乙的平均数、方差、极差及中位数相同的是()A.极差 B.方差C.平均数 D.中位数二、填空题:本题共4小题,每小题5分,共20分。13.设为等差数列的前n项和,若,,则______14.已知、是椭圆的两个焦点,点在椭圆上,且,,则椭圆离心率是___________15.椭圆C:的左、右焦点分别为,,点A在椭圆上,,直线交椭圆于点B,,则椭圆的离心率为______16.已知函数,若,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的中心在原点,焦点在轴上,长轴长为4,离心率等于(1)求椭圆的方程(2)设,若椭圆E上存在两个不同点P、Q满足,证明:直线PQ过定点,并求该定点的坐标.18.(12分)在直角坐标系中,以坐标原点O为圆心的圆与直线相切.(1)求圆O的方程;(2)设圆O交x轴于A,B两点,点P在圆O内,且是、的等比中项,求的取值范围.19.(12分)在锐角中,角的对边分别为,满足.(1)求;(2)若的面积为,求的值.20.(12分)已知函数.(1)若,求的极值;(2)若有两个零点,求实数a取值范围.21.(12分)已知椭圆与椭圆有共同的焦点,且椭圆经过点.(1)求椭圆的标准方程;(2)设为椭圆的左焦点,为椭圆上任意一点,为坐标原点,求的最小值.22.(10分)如图,在正方体中,E为的中点(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】本题首先可根据题意得出,然后根据的周长为得出,最后根据求出的值,即可求出的离心率.【详解】因为椭圆的面积为,所以长半轴长与短半轴长的乘积,因为的周长为,所以根据椭圆的定义易知,,,,则的离心率,故选:A.2、B【解析】根据空间向量线性运算的坐标表示即可得出答案.【详解】解:因为,,所以.故选:B.3、B【解析】由,,得,然后利用向量的加减法法则把向量用向量表示出来,可求出的值,从而可得答案【详解】解:因为,,所以所以,因为,所以,所以,故选:B4、C【解析】画出直观图,利用椎体体积公式进行求解.【详解】画出直观图,为四棱锥A-BCDE,其中BC=4,BE=2,AE=2,且BE,AE,DE两两垂直,故体积为.故选:C5、D【解析】由利用因式分解可得,即可判断出数列是以为首项,为公差的等差数列,从而得到数列,数列的通项公式,进而求出【详解】等价于,而,所以,即可知数列是以为首项,为公差的等差数列,即有,所以,故故选:D6、B【解析】设出l1的方程为,与抛物线联立后得到两根之和,两根之积,用弦长公式表达出,同理表达出,利用基本不等式求出的最小值.【详解】抛物线C:y2=4x的焦点F为,直线l1的方程为,则联立后得到,设,,,则,同理设可得:,因为|k1·k2|=2,所以,当且仅当,即或时,等号成立,故选:B7、B【解析】由题意求出蒙日圆方程,再由两圆只有一个交点可知两圆相切,从而列方程可求出b的值【详解】由题意可得椭圆的蒙日圆的半径,所以蒙日圆方程为,因为圆与椭圆的蒙日圆有且仅有一个公共点,所以两圆相切,所以,解得,故选:B8、C【解析】根据题意可求出C的方程为,即可根据题意判断各选项的真假【详解】对A,由可得,化简得,即,A错误;对B,当A,B,P三点不共线时,点到直线的最大距离为,所以面积的最大值为,B错误;对C,当A,B,P三点不共线时,因为,所以射线是的角平分线,C正确;对D,设,由可得点的轨迹方程为,而圆与圆的圆心距为,两圆内含,所以这样的点不存在,D错误故选:C9、A【解析】根据图象,结合导函数的正负性、极值的定义逐一判断即可.【详解】由图象可知,当时,;当时,,在上单调递增,在上单调递减,可知B错误,A正确;是极大值点,没有极小值,和不是函数的极值点,可知C,D错误故选:A10、A【解析】根据充分条件和必要条件的定义,结合数列的单调性判断【详解】根据题意,已知数列的通项公式为,若数列为单调递增数列,则有(),所以,因为,所以,所以当时,数列为单调递增数列,而当数列为单调递增数列时,不一定成立,所以“”是“数列为单调递增数列”的充分而不必要条件,故选:A11、C【解析】由,可知,使,利用向量的数乘运算及向量相等即可得解.【详解】∵,∴,使,得,解得:,所以故选:C【点睛】思路点睛:在解决有关平行的问题时,通常需要引入参数,如本题中已知,引入参数,使,转化为方程组求解;本题也可以利用坐标成比例求解,即由,得,求出m,n.12、C【解析】根据茎叶图依次计算甲和乙的平均数、方差、中位数和极差即可得到结果.【详解】甲的平均数为:;乙的平均数为:;甲和乙的平均数相同;甲的方差为:;乙的方差为:;甲和乙的方差不相同;甲的极差为:;乙的极差为:;甲和乙的极差不相同;甲的中位数为:;乙的中位数为:;甲和乙的中位数不相同.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、36【解析】利用等差数列前n项和的性质进行求解即可.【详解】因为为等差数列的前n项和,所以也成等差数列,即成等差数列,所以,故答案为:14、【解析】先由,根据椭圆的定义,求出,,再由余弦定理,根据,即可列式求出离心率.【详解】因为点在椭圆上,所以,又,所以,因,在中,由,根据余弦定理可得,解得(负值舍去)故答案为:.【点睛】本题主要考查求椭圆的离心率,属于常考题型.15、(也可以)【解析】可以利用条件三角形为等腰直角三角形,设出边长,找到边长与之间等量关系,然后把等量关系带入到勾股定理表达的等式中,即可求解离心率.【详解】由题意知三角形为等腰直角三角形,设,则,解得,,在三角形中,由勾股定理得,所以,故答案为:(也可以)16、【解析】求出导函数,确定导函数奇函数,然后可求值【详解】由已知,它是奇函数,∴故答案为:【点睛】本题考查导数的运算,考查函数的奇偶性,确定函数的奇偶性是解题关键三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析,.【解析】(1)由题可得,即求;(2)设直线PQ的方程为,联立椭圆方程,利用韦达定理法可得,即得.【小问1详解】由题可设椭圆的方程为,则,∴,∴椭圆的方程为;【小问2详解】当直线PQ的斜率存在时,可设直线PQ的方程为,设,由,得,∴,∵,,∴,∴,∴,∴,又∴,∴直线PQ的方程为过定点;当直线PQ的斜率不存在时,不合题意.故直线PQ过定点,该定点的坐标为.18、(1);(2).【解析】(1)根据题意设出圆方程,结合该圆与直线相切,求得半径,则问题得解;(2)设出点的坐标为,根据题意,求得的等量关系,再构造关于的函数关系,求得函数值域即可.【小问1详解】根据题意,设的方程为,又该圆与直线相切,故可得,则圆的方程为.【小问2详解】对圆:,令,则,不妨设,则,设点,因为点在圆内,故;因为是、的等比中项,故可得:,则,整理得;由可得,解得,则.故答案为:.19、(1);(2).【解析】(1)由条件可得,即,从而可得答案.(2)由条件结合三角形的面积公式可得,再由余弦定理得,配方可得答案.【详解】(1)因为,所以,所以所以,因为所以,因为,所以(2)由面积公式得,于是,由余弦定理得,即,整理得,故.20、(1)极小值为,无极大值(2)【解析】(1)利用导数求出,分别令、,进而得到函数的单调区间,即可求出极值;(2)利用导数讨论、0时函数的单调性,进而得出函数的最小值小于0,解不等式即可.【小问1详解】函数的定义域为,时,.令,解得,∵在上,,在上,,∴在上单调递减,在上单调递增,∴的极小值为,无极大值.【小问2详解】,当时,,∴在上单调递增,此时不可能有2个零点.当0时.令,得,∵在上,,在上,),∴在上单调递减,在上单调递增,∴的最小值为.∵有两个零点,∴,即,∴.经验证,若,则,且,又,∴有两个零点.综上,a的取值范围是.21、(1)(2)【解析】(1)设椭圆的方程为,将点的坐标代入椭圆的方程,求出的值,即可得出椭圆的方程;(2)设点,则,且,利用平面向量数量积的坐标运算结合二次函数的基本性质可求得的最小值.【小问1详解】(1)由题可设椭圆的方程为,由椭圆经过点,可得,解得或(舍).所以,椭圆的标准方程为.【小问2详解】解:易知,设点,则,且,,,则,当且仅当时,等号成立,故的最小值为.22、(Ⅰ)证明见解析;(Ⅱ).【解析】(Ⅰ)证明出四边形为平行四边形,可得出,然后利用线面平行的判定定理可证得结论;也可利用空间向量计算证明;(Ⅱ)可以将平面扩展,将线面角转化,利用几何方法作出线面角,然后计算;也可以建立空间直角坐标系,利用空间向量计算求解.【详解】(Ⅰ)[方法一]:几何法如下图所示:在正方体中,且,且,且,所以,四边形为平行四边形,则,平面,平面,平面;[方法二]:空间向量坐标法以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,设正方体的棱长为,则、、、,,,设平面的法向量为,由,得,令,则,,则.又∵向量,,又平面,平面;(Ⅱ)[方法一]:几何法延长到,使得,连接,交于,又∵,∴四边形为平行四边形,∴,又∵,∴,所以平面即平面,连接,作,垂足为,连接,∵平面,平面,∴,又∵,∴直线平面,又∵直线平面,∴平面平面,∴在平面中的射影在直线上,∴直线为直线在平面中的射影,∠为直线与平面所成的角,根据直线直线,可知∠为直线与平面所成的角.设正方体的棱长为2,则,,∴,∴,∴,即直线与平面所成角的正弦值为.[方法二]:向量法接续(I)的向量方法,求得平面平面的法向量,又∵,∴,∴直线与平面所成角的正弦值为.[方法三]:几何法+体积法如图,设的中点为F,延长,易证三线交于一点P因为,所以直线与平面所成的角,即直线与平面所成的角设正方体的棱长为2,在中,易得,可得由,得,整理得所以所以直线与平面所成角的正弦值为[

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论