版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
西藏自治区林芝市第二高级中学2025届高一上数学期末调研试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则的大小关系为.A. B.C. D.2.函数y=|x2-1|与y=a的图象有4个交点,则实数a的取值范围是A.(0,) B.(-1,1)C.(0,1) D.(1,)3.已知点,,,则的面积为()A.5 B.6C.7 D.84.若曲线与直线始终有交点,则的取值范围是A. B.C. D.5.从3名男同学,2名女同学中任选2人参加体能测试,则选到的2名同学中至少有一名男同学的概率是()A. B.C. D.6.下列函数图象中,不能用二分法求零点的是()A. B.C. D.7.将函数的图象上所有点的横坐标缩短为原来的倍(纵坐标不变),再向右平移个单位,得到函数的图象,则函数的图象的一条对称轴为A. B.C. D.8.已知圆锥的底面半径为,且它的侧面开展图是一个半圆,则这个圆锥的体积为()A. B.C. D.9.满足2,的集合A的个数是A.2 B.3C.4 D.810.若,则下列不等式一定成立的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知是第四象限角且,则______________.12.命题“,”的否定是_________.13.如图,在正方体中,、分别是、上靠近点的三等分点,则异面直线与所成角的大小是______.14.若偶函数在区间上单调递增,且,,则不等式的解集是___________.15.若函数在区间上有两个不同的零点,则实数a的取值范围是_________.16.在空间直角坐标系中,设,,且中点为,是坐标原点,则__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆O:,点,点,直线l过点P(1)若直线l与圆O相切,求l的方程;(2)若直线l与圆O交于不同的两点A,B,线段AB的中点为M,且M的纵坐标为-,求△NAB的面积18.已知函数(,)的部分图象如图所示.(1)求的解析式;(2)若对任意,恒成立,求实数m的取值范围;(3)求实数a和正整数n,使得()在上恰有2021个零点.19.计算:20.已知函数(1)求函数的最小正周期;(2)将函数的图象向左平移个单位长度得到函数的图象,若关于的方程在上有2个不等的实数解,求实数的取值范围21.在平面直角坐标系xOy中,角的顶点与原点O重合,始边与x轴的正半轴重合,它的终边过点,以角的终边为始边,逆时针旋转得到角Ⅰ求值;Ⅱ求的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由指数函数,对数函数的单调性,求出的大致范围即可得解.【详解】解:因为,,即,故选D.【点睛】本题考查了比较指数值,对数值的大小关系,属基础题.2、C【解析】作函数图象,根据函数图像确定实数a的取值范围.【详解】作函数图象,根据函数图像得实数a的取值范围为(0,1),选C.【点睛】利用函数图象可以解决很多与函数有关的问题,如利用函数的图象解决函数性质问题,函数的零点、方程根的问题,有关不等式的问题等.解决上述问题的关键是根据题意画出相应函数的图象,利用数形结合的思想求解.3、A【解析】设AB边上的高为h,则S△ABC=|AB|·h,根据两点的距离公式求得|AB|,而AB边上的高h就是点C到直线AB的距离,由点到直线的距离公式可求得选项【详解】设AB边上的高为h,则S△ABC=|AB|·h,而|AB|=,AB边上的高h就是点C到直线AB的距离AB边所在的直线方程为,即x+y-4=0.点C到直线x+y-4=0的距离为,因此,S△ABC=×2×=5.故选:A4、A【解析】本道题目先理解的意义,实则为一个半圆,然后利用图像,绘制出该直线与该圆有交点的大致位置,计算出b的范围,即可.【详解】要使得这两条曲线有交点,则使得直线介于1与2之间,已知1与圆相切,2过点(1,0),则b分别为,故,故选A.【点睛】本道题目考查了圆与直线的位置关系,做此类题可以结合图像,得出b的范围.5、A【解析】先计算一名男同学都没有的概率,再求至少有一名男同学的概率即可.【详解】两名同学中一名男同学都没有的概率为,则2名同学中至少有一名男同学的概率是.故选:A.6、B【解析】利用二分法求函数零点所满足条件可得出合适的选项.【详解】观察图象与轴的交点,若交点附近的函数图象连续,且在交点两侧的函数值符号相异,则可用二分法求零点,故B不能用二分法求零点故选:B.7、C【解析】,所以,所以,所以是一条对称轴故选C8、A【解析】半径为的半径卷成一圆锥,则圆锥的母线长为,设圆锥的底面半径为,则,即,∴圆锥的高,∴圆锥的体积,所以的选项是正确的9、C【解析】由条件,根据集合的子集的概念与运算,即可求解【详解】由题意,可得满足2,的集合A为:,,,2,,共4个故选C【点睛】本题主要考查了集合的定义,集合与集合的包含关系的应用,其中熟记集合的子集的概念,准确利用列举法求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题10、B【解析】对于ACD,举例判断即可,对于B,利用不等式的性质判断【详解】解:对于A,令,,满足,但,故A错误,对于B,∵,∴,故B正确,对于C,当时,,故C错误,对于D,令,,满足,而,故D错误.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】直接由平方关系求解即可.【详解】由是第四象限角,可得.故答案为:.12、,##【解析】根据全称量词命题的否定即可得出结果.【详解】由题意知,命题“”的否定为:.故答案为:.13、【解析】连接,可得出,证明出四边形为平行四边形,可得,可得出异面直线与所成角为或其补角,分析的形状,即可得出的大小,即可得出答案.【详解】连接、、,,,在正方体中,,,,所以,四边形为平行四边形,,所以,异面直线与所成的角为.易知为等边三角形,.故答案为:.【点睛】本题考查异面直线所成角的计算,一般利用平移直线法,选择合适的三角形求解,考查计算能力,属于中等题.14、【解析】根据题意,结合函数的性质,分析可得在区间上的性质,即可得答案.【详解】因为偶函数在区间上单调递增,且,,所以在区间上单调上单调递减,且,所以的解集为.故答案为:15、【解析】首先根据函数的解析式确定,再利用换元法将函数在区间上有两个不同的零点的问题,转化为方程区间上有两个不同根的问题,由此列出不等式组解得答案.【详解】函数在区间上有两个不同的零点,则,故由可知:,当时,,显然不符合题意,故,又函数在区间上有两个不同的零点,等价于在区间上有两个不同的根,设,则函数在区间上有两个不同的根,等价于在区间上有两个不同的根,由得,要使区间上有两个不同的根,需满足a2-5a+1>06a故答案为:16、【解析】,故三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或(2)【解析】(1)根据题意,分直线斜率存在与不存在两种情况讨论求解,当直线斜率存在时,根据点到直线的距离公式求参数即可;(2)设直线l方程为,,进而与圆的方程联立得中点的坐标,,解方程得直线方程,再求三角形面积即可.【小问1详解】解:若直线l的斜率不存在,则l的方程为,此时直线l与圆O相切,符合题意;若直线l的斜率存在,设直线l的方程为,因为直线l与圆O相切,所以圆心(0,0)到l的距离为2,即,解得,所以直线l的方程为,即故直线l的方程为或【小问2详解】解:设直线l的方程为,因为直线l与圆O相交,所以结合(1)得联立方程组消去y得,设,则,设中点,,①代入直线l的方程得,②解得或(舍去)所以直线l的方程为因为圆心到直线l的距离,所以因为N到直线l的距离所以18、(1)(2)(3)当时,;当时,【解析】(1)根据图象的特点,通过的周期和便可得到的解析式;(2)通过换元转化为一元二次不等式的恒成立问题,根据二次函数的特点得到,然后解出不等式即可;(3)将函数的零点个数问题,转化为的图象与直线的交点个数问题,然后分析在一个周期内与的交点情况,根据的取值情况分类讨论即可【小问1详解】根据图象可知,且,的周期为:解得:,此时,,且可得:解得:故【小问2详解】当时,令,又恒成立等价于在上恒成立令,则有:开口向上,且,只需即可满足题意故实数m的取值范围是【小问3详解】由题意可得:的图象与直线在上恰有2021个零点在上时,,分类讨论如下:①当时,的图象与直线在上无交点;②当时,的图象与直线在仅有一个交点,此时的图象与直线在上恰有2021个交点,则;③当或时,的图象与直线在上恰有2个交点,的图象与直线在上有偶数个交点,不会有2021个交点;④当时,的图象与直线在上恰有3个交点,此时才能使的图象与直线在上有2021个交点.综上,当时,;当时,.19、109【解析】化根式为分数指数幂,运用有理数指数幂的运算性质化简可求出值.【详解】原式=()6+1=22×33+2﹣1=108+2﹣1=109【点睛】本题考查根式的概念,将根式化为分数指数幂和其运算法则的应用,属于基础题.20、(1)(2)【解析】(1)利用三角恒等变换化简,由周期公式求解即可;(2)先求出的解析式,再把所求转化为方程在上有2个不等的实数解,令,根据图象即可求得结论【小问1详解】解:,即,所以函数的最小正周期为【小问2详解】解:由已知可得,方程在上有2个不等的实数解,即方程在上有2个不等的实数解令,因为,,,,,令,则,,作出函数图象如下图所示:要使方程在上有2个不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度绿色建材采购与施工一体化服务合同4篇
- 2025年度美容院消防安全管理服务合同4篇
- 2025年老旧小区改造工程服务合同
- 二零二五年度离婚前财产分割专项合同4篇
- 二零二五年度古建筑泥工修缮工程承包合同8篇
- 2025年个人房产抵押贷款合同范本2篇
- 2025年度农药产品安全评价与风险评估合同
- 2025年度个人名下房产出售合同范本2篇
- 课题申报参考:民国时期华东地区传统体育史料搜集与辑录研究
- 课题申报参考:面向能源结构转型的掺氢天然气负荷预测及其储能布局优化研究
- 2024年全国职业院校技能大赛高职组(研学旅行赛项)考试题库(含答案)
- 2025年温州市城发集团招聘笔试参考题库含答案解析
- 2025年中小学春节安全教育主题班会课件
- 2025版高考物理复习知识清单
- 除数是两位数的除法练习题(84道)
- 2025年度安全检查计划
- 2024年度工作总结与计划标准版本(2篇)
- 全球半导体测试探针行业市场研究报告2024
- 反走私课件完整版本
- 2024年注册计量师-一级注册计量师考试近5年真题附答案
- 四年级下册数学知识点总结
评论
0/150
提交评论