




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市华东师大一附中2025届数学高一上期末联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的零点所在的区间为()A.(,1) B.(1,2)C. D.2.关于的方程的实数根的个数为()A.6 B.4C.3 D.23.已知正方体,则异面直线与所成的角的余弦值为A. B.C. D.4.若,则a,b,c的大小关系是()A. B.C. D.5.已知点在圆外,则直线与圆的位置关系是()A.相切 B.相交C.相离 D.不确定6.已知,则A. B.C. D.7.设长方体的长、宽、高分别为,其顶点都在一个球面上,则该球的表面积为A.3a2 B.6a2C.12a2 D.24a28.若函数恰有个零点,则的取值范围是()A. B.C. D.9.已知,则的值为()A.-4 B.C. D.410.若角的终边经过点,且,则()A.﹣2 B.C. D.2二、填空题:本大题共6小题,每小题5分,共30分。11.在平面直角坐标系xOy中,已知圆有且仅有三个点到直线l:的距离为1,则实数c的取值集合是______12.已知函数,则________.13.写出一个同时满足以下条件的函数___________;①是周期函数;②最大值为3,最小值为;③在上单调14.若,,.,则a,b,c的大小关系用“”表示为________________.15.已知直线与两坐标轴所围成的三角形的面积为1,则实数值是____________16.计算:________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,且若,求的值;与能否平行,请说明理由18.已知函数.(1)当有是实数解时,求实数的取值范围;(2)若,对一切恒成立,求实数的取值范围.19.如图,已知直线//,是直线、之间的一定点,并且点到直线、的距离分别为1、2,垂足分别为E、D,是直线上一动点,作,且使与直线交于点.试选择合适的变量分别表示三角形的直角边和面积S,并求解下列问题:(1)若为等腰三角形,求和的长;(2)求面积S最小值.20.已知函数求:的最小正周期;的单调增区间;在上的值域21.已知,(1)求(2)设与的夹角为,求
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】为定义域内的单调递增函数,计算选项中各个变量的函数值,判断在正负,即可求出零点所在区间.【详解】解:在上为单调递增函数,又,所以的零点所在的区间为.故选:D.2、D【解析】转化为求或的实根个数之和,再构造函数可求解.【详解】因为,所以,所以,所以或,令,则或,因为为增函数,且的值域为,所以和都有且只有一个实根,且两个实根不相等,所以原方程的实根的个数为.故选:D3、A【解析】将平移到,则异面直线与所成的角等于,连接在根据余弦定理易得【详解】设正方体边长为1,将平移到,则异面直线与所成的角等于,连接.则,所以为等边三角形,所以故选A【点睛】此题考查立体几何正方体异面直线问题,异面直线求夹角,将其中一条直线平移到与另外一条直线相交形成的夹角即为异面直线夹角,属于简单题目4、A【解析】根据题意,以及指数和对数的函数的单调性,来确定a,b,c的大小关系.【详解】解:是增函数,是增函数.,又,【点睛】本题考查三个数的大小的求法,考查指数函数和对数函数性质等基础知识,考查运算求解能力,是基础题.根据题意,构造合适的对数函数和指数函数,利用指数对数函数的单调性判定的范围是关键.5、B【解析】由题意结合点与圆的位置关系考查圆心到直线的距离与圆的半径的大小关系即可确定直线与圆的位置关系.【详解】点在圆外,,圆心到直线距离,直线与圆相交.故选B.【点睛】本题主要考查点与圆的位置关系,直线与圆的位置关系等知识,意在考查学生的转化能力和计算求解能力.6、B【解析】,因为函数是增函数,且,所以,故选B考点:对数的运算及对数函数的性质7、B【解析】方体的长、宽、高分别为,其顶点都在一个球面上,长方体的对角线的长就是外接球的直径,所以球直径为:,所以球的半径为,所以球的表面积是,故选B8、D【解析】由分段函数可知必须每段有且只有1个零点,写出零点建立不等式组即可求解.【详解】因为时至多有一个零点,单调函数至多一个零点,而函数恰有个零点,所以需满足有1个零点,有1个零点,所以,解得,故选:D9、A【解析】由题,解得.故选A.10、D【解析】根据三角函数定义得到,计算得到答案.【详解】故选:【点睛】本题考查了三角函数定义,属于简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】因为圆心到直线的距离为,所以由题意得考点:点到直线距离12、7【解析】根据题意直接求解即可【详解】解:因为,所以,故答案为:713、(答案不唯一)【解析】根据余弦函数的性质,构造满足题意的函数,由此即可得到结果.详解】由题意可知,,因为的周期为,满足条件①;又,所以,满足条件②;由于函数在区间上单调递减,所以区间上单调递减,故满足条件③.故答案为:.14、cab【解析】根据指数函数的单调性以及对数函数的单调性分别判断出的取值范围,从而可得结果【详解】,即;,即;,即,综上可得,故答案为:.【点睛】方法点睛:解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.15、1或-1【解析】令x=0,得y=k;令y=0,得x=−2k.∴三角形面积S=|xy|=k2.又S=1,即k2=1,值是1或-1.16、【解析】由,利用正弦的和角公式求解即可【详解】原式,故答案为:【点睛】本题考查正弦的和角公式的应用,考查三角函数的化简问题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)不能平行.【解析】推导出,从而,,进而,由此能求出假设与平行,则推导出,,由,得,不能成立,从而假设不成立,故与不能平行【详解】,,且.,,,,,.假设与平行,则,则,,,,不能成立,故假设不成立,故与不能平行【点睛】本题考查向量的模的求法,考查向量能否平行的判断,考查向量垂直、向量平行的性质等基础知识,考查运算求解能力,是基础题.18、(1);(2)【解析】(1)由题意可知实数的取值范围为函数的值域,结合三角函数的范围和二次函数的性质可知时函数取得最小值,当时函数取得最大值,实数的取值范围是.(2)由题意可得时函数取得最大值,当时函数取得最小值,原问题等价于,求解不等式组可得实数的取值范围是.试题解析:(1)因为,可化得,若方程有解只需实数的取值范围为函数的值域,而,又因为,当时函数取得最小值,当时函数取得最大值,故实数的取值范围是.(2)由,当时函数取得最大值,当时函数取得最小值,故对一切恒成立只需,解得,所以实数的取值范围是.点睛:二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.19、(1),;(2)2.【解析】(1)根据相似三角形的判定定理和性质定理,结合等腰三角形的性质、勾股定理进行求解即可;(2)根据直角三角形面积公式,结合基本不等式进行求解即可.【小问1详解】由点到直线、的距离分别为1、2,得AE=1、AD=2,由,得,则,由题意得,在中,,从而,由和,得∽,则,即,在中,,在中,,由为等腰三角形,得,则且,故,.【小问2详解】由,,,得在中,,当且仅当即时等号成立,故面积S的最小值为2.20、(1);(2),;(3).【解析】利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性,得出结论;利用正弦函数的单调性,求得的单调增区间;利用正弦函数的定义域和值域,求得在上的值域【详解】函数,故函数的最小正周期为.令,求得,可得函数的增区间为,在上,,,,即的值域为【点睛】本题主要考查三角恒等变换,正弦函数的周期性,单调性
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 追责权利协议书
- 男士离婚协议书
- 美妆学徒协议书
- 广告带制作合同协议书
- 小产权买卖合同协议书
- 旧改房买卖合同协议书
- 苹果充电协议书
- 空调经销协议书
- 房屋翻改造合同协议书
- 合建自建房合同协议书
- 广东省潮州市各县区乡镇行政村村庄村名明细
- 代领毕业证委托书模板(通用6篇)
- 预拌混凝土运输单(正本)
- 服务器验收报告
- 装配式建筑设计施工总结PPT(127页)
- [安徽]高速公路改扩建工程交通组织方案(155页)
- 张齐华:《平均数》课件
- 部编版四年级语文下册第五单元复习教案设计
- 《铁路线路里程断链设置和管理规定》
- 21世纪音乐教育发展趋势——问题与对策2004年音乐教育国际学术会议在上海音乐学院召开
- 中国字-中国人-歌词
评论
0/150
提交评论