版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届重庆市西南大学附属中学数学高二上期末教学质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线,过点作直线l,若l与该双曲线只有一个公共点,这样的直线条数为()A.1 B.2C.3 D.42.过椭圆右焦点作x轴的垂线,并交C于A,B两点,直线l过C的左焦点和上顶点.若以线段AB为直径的圆与有2个公共点,则C的离心率e的取值范围是()A. B.C. D.3.当时,不等式恒成立,则实数的取值范围为()A. B.C. D.4.下列抛物线中,以点为焦点的是()A. B.C. D.5.已知等差数列,,,则数列的前项和为()A. B.C. D.6.若函数在区间内存在最大值,则实数的取值范围是()A. B.C. D.7.方程表示的曲线为焦点在y轴上的椭圆,则k的取值范围是()A. B.C.或 D.8.已知椭圆的长轴长为10,焦距为8,则该椭圆的短轴长等于()A.3 B.6C.8 D.129.已知在一次降雨过程中,某地降雨量(单位:mm)与时间t(单位:min)的函数关系可表示为,则在时的瞬时降雨强度为()mm/min.A. B.C.20 D.40010.已知双曲线,则该双曲线的实轴长为()A.1 B.2C. D.11.已知两定点和,动点在直线上移动,椭圆C以A,B为焦点且经过点P,则椭圆C的短轴的最小值为()A. B.C. D.12.在中,,,,若该三角形有两个解,则范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.历史上第一个研究圆锥曲线的是梅纳库莫斯(公元前375年—325年),大约100年后,阿波罗尼奥更详尽、系统地研究了圆锥曲线,并且他还进一步研究了这些圆锥曲线的光学性质,比如:从抛物线的焦点发出的光线或声波在经过抛物线反射后,反射光线平行于抛物线的对称轴:反之,平行于抛物线对称轴的光线,经抛物线反射后,反射光线经过抛物线的焦点.已知抛物线,经过点一束平行于C对称轴的光线,经C上点P反射后交C于点Q,则PQ的长度为______.14.已知三个数2,,6成等比数列,则实数______15.平面直角坐标系内动点M()与定点F(4,0)的距离和M到定直线的距离之比是常数,则动点M的轨迹是___________16.已知存在正数使不等式成立,则的取值范围_____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前n项积,数列为等差数列,且,(1)求与的通项公式;(2)若,求数列的前n项和18.(12分)已知p:,q:(1)若p是q的必要不充分条件,求实数m的范围;(2)若是的必要不充分条件,求实数m的范围19.(12分)记为等差数列的前项和,已知,.(1)求的通项公式;(2)求,并求的最小值.20.(12分)已知函数.(1)求曲线在点处的切线的方程.(2)若直线为曲线切线,且经过坐标原点,求直线的方程及切点坐标.21.(12分)如图,在三棱锥中,,点P为线段MC上的点(1)若平面PAB,试确定点P的位置,并说明理由;(2)若,,,求三棱锥的体积22.(10分)(1)求过点,且与直线垂直的直线方程;(2)甲,乙,丙等7名同学站成一排,若甲和乙相邻,但甲乙二人都不和丙相邻,则共有多少种不同排法?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先确定双曲线的右顶点,再分垂直轴、与轴不垂直两种情况讨论,当与轴不垂直时,可设直线方程为,联立直线与抛物线方程,消元整理,再分、两种情况讨论,即可得解【详解】解:根据双曲线方程可知右顶点为,使与有且只有一个公共点情况为:①当垂直轴时,此时过点的直线方程为,与双曲线只有一个公共点,②当与轴不垂直时,可设直线方程为联立方程可得当即时,方程只有一个根,此时直线与双曲线只有一个公共点,当时,,整理可得即故选:D2、A【解析】求得以为直径的圆的圆心和半径,求得直线的方程,利用圆心到直线的距离小于半径列不等式,化简后求得椭圆离心率的取值范围.【详解】椭圆的左焦点,右焦点,上顶点,,所以为直径的圆的圆心为,半径为.直线的方程为,由于以线段为直径的圆与相交,所以,,,,,所以椭圆的离心率的取值范围是.故选:A3、A【解析】设,对实数的取值进行分类讨论,求得,解不等式,综合可得出实数的取值范围.【详解】设,其中.①当时,即当时,函数在区间上单调递增,则,解得,此时不存在;②当时,,解得;③当时,即当时,函数在区间上单调递减,则,解得,此时不存在.综上所述,实数的取值范围是.故选:A.4、A【解析】由题意设出抛物线的方程,再结合焦点坐标即可求出抛物线的方程.【详解】∵抛物线为,∴可设抛物线方程为,∴即,∴抛物线方程为,故选:A.5、A【解析】求出通项,利用裂项相消法求数列的前n项和.【详解】因为等差数列,,,所以,所以,所以数列的前项和为故B,C,D错误.故选:A.6、A【解析】利用函数的导数,求解函数的极值,推出最大值,然后转化列出不等式组求解的范围即可【详解】,或,∴在单调递减,在单调递增,在单调递减,∴f(x)有极大值,要使f(x)在上有最大值,则极大值3即为该最大值,则,又或,∴,综上,.故选:A.7、D【解析】根据曲线为焦点在y轴上的椭圆可得出答案.【详解】因为方程表示的曲线为焦点在y轴上的椭圆,所以,解得.故选:D.8、B【解析】根据椭圆中的关系即可求解.【详解】椭圆的长轴长为10,焦距为8,所以,,可得,,所以,可得,所以该椭圆的短轴长,故选:B.9、B【解析】对题设函数求导,再求时对应的导数值,即可得答案.【详解】由题设,,则,所以在时的瞬时降雨强度为mm/min.故选:B10、B【解析】根据给定的双曲线方程直接计算即可作答.【详解】双曲线的实半轴长,所以该双曲线的实轴长为2.故选:B11、B【解析】根据题意,点关于直线对称点的性质,以及椭圆的定义,即可求解.【详解】根据题意,设点关于直线的对称点,则,解得,即.根据椭圆的定义可知,,当、、三点共线时,长轴长取最小值,即,由且,得,因此椭圆C的短轴的最小值为.故选:B.12、D【解析】根据三角形解得个数可直接构造不等式求得结果.【详解】三角形有两个解,,即.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、####【解析】根据题意,求得点以及抛物线焦点的坐标,即可求得所在直线方程,联立其与抛物线方程,求得点的坐标,即可求得.【详解】因为经过点一束平行于C对称轴的光线交抛物线于点,故对,令,则可得,也即的坐标为,又抛物线的焦点的坐标为,故可得直线方程为,联立抛物线方程可得:,,解得或,将代入,可得,即的坐标为,则.故答案为:.14、【解析】由题意可得,从而可求出的值【详解】因为三个数2,,6成等比数列,所以,解得故答案为:15、【解析】根据直接法,即可求轨迹.【详解】解:动点与定点的距离和它到定直线的距离之比是常数,根据题意得,点的轨迹就是集合,由此得.将上式两边平方,并化简,得所以,动点的轨迹是长轴长、短轴长分别为12、的椭圆故答案为:16、(1,1)【解析】存在性问题转化为最大值,运用均值不等式,求出的最大值,转化成解对数不等式,进而解出【详解】解:∵,由于,则,∴,当且仅当时,即:时,∴有最大值,又存在正数使不等式成立,则,即,∴,即的取值范围为:.故答案为:【点睛】本题考查均值不等式的应用和对数不等式的解法,还涉及存在性问题,考查化简计算能力三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),.(2).【解析】(1)由已知得,,两式相除得,由已知得,求得数列的公差为,由等差数列的通项公式可求得;(2)运用错位相减法可求得.【小问1详解】解:因为数列的前n项积,所以,所以,两式相除得,因为数列为等差数列,且,,所以,即,所以数列的公差为,所以,所以,【小问2详解】解:由(1)得,所以,,所以,所以.18、(1),;(2),【解析】解不等式,(1)由题意得,从而求得;(2)由题意可转化为是的充分不必要条件,从而得到,化简即可【小问1详解】解不等式得,是的必要不充分条件,,解得,,即实数的范围为,;小问2详解】是的必要不充分条件,是的充分不必要条件,故,解得,,即实数的范围为,19、(1)(2),【解析】(1)由,计算出公差,再写出通项公式即可.(2)直接用公式写出,配方后求出最小值.【小问1详解】设公差为,由得,从而,即又,【小问2详解】由(1)的结论,,,当时,取得最小值.20、(1);(2)直线的方程为,切点坐标为.【解析】(1)先求导数,再根据导数几何意义得切线斜率,最后根据点斜式得结果,(2)设切点,根据导数几何意义得切线斜率,根据点斜式得切线方程,再根据切线过坐标原点解得结果.【详解】(1).所以在点处的切线的斜率,∴切线的方程为;(2)设切点为,则直线的斜率为,所以直线的方程为:,所以又直线过点,∴,整理,得,∴,∴,的斜率,∴直线的方程为,切点坐标为.【点睛】本题考查导数几何意义以及利用导数求切线方程,考查基本分析求解能力,属基础题.21、(1)点P为MC中点,理由见解析(2)【解析】(1)根据平面PAB,得到线线垂直,再得到点P的位置;(2)根据平面PAB,将问题转化为计算即可.【小问1详解】∵平面PAB,平面ABP,∴又∵在中,,∴P为MC中点.∴若平面PAB,则点P为MC中点【小问2详解】当P为中点时,在中,,,∴,同理可得∴在中,,∵由(1)知平面PAB,∴∴三棱锥的体积为22、(1);(2)960【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度化妆品研发与销售合作合同模板4篇
- 2025年度旅游度假村场地租赁及基础设施改造合同4篇
- 2025年度车辆过户合同协议书(含检测)
- 2025年度舞台搭建安全责任与施工管理合同
- 2025年度电子商务平台销售折扣与品牌推广合同
- 二零二五年度淘宝电商合作运营合同
- 2025年度跨境电商门市房租赁合同(国际物流支持)
- 2025年度二零二五年度试用期员工试用期合同解除与赔偿合同
- 二零二五年度汽车抵押贷款担保合同
- 《溜索》课时同步练(解析版)
- 全自动化学发光分析仪操作规程
- 北仑区建筑工程质量监督站监督告知书
- 深蓝的故事(全3册)
- GB/T 42461-2023信息安全技术网络安全服务成本度量指南
- 职校开学第一课班会PPT
- 法考客观题历年真题及答案解析卷一(第1套)
- 央国企信创白皮书 -基于信创体系的数字化转型
- GB/T 36964-2018软件工程软件开发成本度量规范
- 6第六章 社会契约论.电子教案教学课件
- 机加车间各岗位绩效考核方案
- 小学数学专题讲座:小学数学计算能力的培养课件
评论
0/150
提交评论