版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届上海市民立中学高二上数学期末质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的离心率为2,且与椭圆有相同的焦点,则该双曲线的渐近线方程为()A. B.C. D.2.已知不等式解集为,下列结论正确的是()A. B.C D.3.高中生在假期参加志愿者活动,既能服务社会又能锻炼能力.某同学计划在福利院、社区、图书馆和医院中任选两个单位参加志愿者活动,则参加图书馆活动的概率为()A. B.C. D.4.若直线l与椭圆交于点A、B,线段的中点为,则直线l的方程为()A. B.C. D.5.古希腊数学家阿波罗尼斯的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数且的点的轨迹是圆,后人将之称为阿波罗尼斯圆.现有椭圆为椭圆长轴的端点,为椭圆短轴的端点,,分别为椭圆的左右焦点,动点满足面积的最大值为面积的最小值为,则椭圆的离心率为()A. B.C. D.6.已知E、F分别为椭圆的左、右焦点,倾斜角为的直线l过点E,且与椭圆交于A,B两点,则的周长为A.10 B.12C.16 D.207.设为可导函数,且满足,则曲线在点处的切线的斜率是A. B.C. D.8.函数在上是单调递增函数,则的最大值等于()A.2 B.3C.5 D.69.已知椭圆:的左、右焦点为,,上顶点为P,则()A.为锐角三角形 B.为钝角三角形C.为直角三角形 D.,,三点构不成三角形10.设,则“”是“直线与直线”平行的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.即不充分也不必要条件11.抛物线y=4x2的焦点坐标是()A.(0,1) B.(1,0)C. D.12.在平行六面体ABCD﹣A1B1C1D1中,AC与BD的交点为M,设=,=,=,则=()A.++ B.+C.++ D.+二、填空题:本题共4小题,每小题5分,共20分。13.已知命题p:若,则,那么命题p的否命题为______14.圆锥的轴截面是边长为2的等边三角形,为底面中心,为的中点,动点在圆锥底面内(包括圆周).若,则点形成的轨迹的长度为______15.已知数列{}的前n项和为,则该数列的通项公式__________.16.已知某次数学期末试卷中有8道4选1的单选题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,已知抛物线的焦点与椭圆的右焦点重合(1)求椭圆的离心率;(2)求抛物线的方程;(3)设是抛物线上一点,且,求点的坐标18.(12分)如图,在三棱锥中,是边长为2的等边三角形,,O是BC的中点,(1)证明:平面平面BCD;(2)若三棱锥的体积为,E是棱AC上的一点,当时,二面角E-BD-C大小为60°,求t的值19.(12分)已知圆C的方程为.(1)直线l1过点P(3,1),倾斜角为45°,且与圆C交于A,B两点,求AB的长;(2)求过点P(3,1)且与圆C相切的直线l2的方程.20.(12分)在等比数列中,是与的等比中项,与的等差中项为6(1)求的通项公式;(2)设,求数列前项和21.(12分)已知椭圆:经过点,设右焦点F,椭圆上存在点Q,使QF垂直于x轴且.(1)求椭圆的方程;(2)过点的直线与椭圆交于D,G两点.是否存在直线使得以DG为直径的圆过点E(-1,0)?若存在,求出直线的方程,若不存在,说明理由.22.(10分)已知圆关于直线对称,且圆心C在轴上.(1)求圆C的方程;(2)直线与圆C交于A、B两点,若为等腰直角三角形,求直线的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】求出焦点,则可得出,即可求出渐近线方程.【详解】由椭圆可得焦点为,则设双曲线方程为,可得,则离心率,解得,则,所以渐近线方程为.故选:B.2、C【解析】根据不等式解集为,得方程解为或,且,利用韦达定理即可将用表示,即可判断各选项的正误.【详解】解:因为不等式解集为,所以方程的解为或,且,所以,所以,所以,故ABD错误;,故C正确.故选:C.3、D【解析】对4个单位分别编号,利用列举法求出概率作答.【详解】记福利院、社区、图书馆和医院分别为A,B,C,D,从4个单位中任选两个的试验有AB,AC,AD,BC,BD,CD,共6个基本事件,它们等可能,其中有参加图书馆活动的事件有AC,BC,CD,共3个基本事件,所以参加图书馆活动的概率.故选:D4、A【解析】用点差法即可获解【详解】设.则两式相减得即因为,线段AB的中点为,所以所以所以直线的方程为,即故选:A5、A【解析】由题可得动点M的轨迹方程,可得,,即求.【详解】设,,由,可得=2,化简得.∵△MAB面积的最大值为面积的最小值为,∴,,∴,即,∴故选:A6、D【解析】利用椭圆的定义即可得到结果【详解】椭圆,可得,三角形的周长,,所以:周长,由椭圆的第一定义,,所以,周长故选D【点睛】本题考查椭圆简单性质的应用,椭圆的定义的应用,三角形的周长的求法,属于基本知识的考查7、D【解析】由题,为可导函数,,即曲线在点处的切线的斜率是,选D【点睛】本题考查导数的定义,切线的斜率,以及极限的运算,本题解题的关键是对所给的极限式进行整理,得到符合导数定义的形式8、B【解析】由f(x)=x3﹣ax在[1,+∞)上是单调增函数,得到在[1,+∞)上,恒成立,从而解得a≤3,故a的最大值为3【详解】解:∵f(x)=x3﹣ax在[1,+∞)上是单调增函数∴在[1,+∞)上恒成立即a≤3x2,∵x∈[1,+∞)时,3x2≥3恒成立,∴a≤3,∴a的最大值是3故选:B9、A【解析】根据题意求得,要判断的形状,只需要看是什么角即可,利用余弦定理判断,从而可得结论.【详解】解:由椭圆:,得,则,则,所以且为锐角,因为,所以锐角,所以为锐角三角形.故选:A.10、D【解析】由两直线平行确定参数值,根据充分必要条件的定义判断【详解】时,两直线方程分别为,,它们重合,不平行,因此不是充分条件;反之,两直线平行时,,解得或,由上知时,两直线不平行,时,两直线方程分别为,,平行,因此,本题中也不是必要条件故选:D11、C【解析】将抛物线方程化为标准方程,由此可抛物线的焦点坐标得选项.【详解】解:将抛物线y=4x2的化为标准方程为x2=y,p=,开口向上,焦点在y轴的正半轴上,故焦点坐标为(0,).故选:C12、B【解析】利用向量三角形法则、平行四边形法则、向量共线定理即可得出【详解】如图所示,∵=+,又=,=-,=,∴=+,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、若,则【解析】直接利用否命题的定义,对原命题的条件与结论都否定即可得结果【详解】因为命题:若,则,所以否定条件与结论后,可得命题的否命题为若,则,故答案为若,则,【点睛】本题主要考查命题的否命题,意在考查对基础知识的掌握与应用,属于基础题14、【解析】建立空间直角坐标系设,,,,于是,,因为,所以,从而,,此为点形成的轨迹方程,其在底面圆盘内的长度为15、2n+1【解析】由计算,再计算可得结论【详解】由题意时,,又适合上式,所以故答案为:【点睛】本题考查由求通项公式,解题根据是,但要注意此式不含,16、##0.84375【解析】合理设出事件,利用全概率公式进行求解.【详解】设小王从这8题中任选1题,且作对为事件A,选到能完整做对的5道题为事件B,选到有思路的两道题为事件C,选到完全没有思路为事件D,则,,,由全概率公式可得:PA=PB故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)【解析】(1)由椭圆方程即可求出离心率.(2)求出椭圆的焦点即为抛物线的焦点,即可求出答案.(3)由抛物线定义可求出点的坐标【小问1详解】由题意可知,.【小问2详解】椭圆的右焦点为,故抛物线的焦点为.抛物线的方程为.【小问3详解】设的坐标为,,解得,.故的坐标为.18、(1)证明见解析(2)3【解析】(1)证得平面BCD,结合面面垂直判定定理即可得出结论;(2)建立空间直角坐标系,利用空间向量求二面角的公式可得,进而解方程即可求出结果.【小问1详解】因为,O是BC的中点,所以,又因为,且,平面BCD,平面BCD,所以平面BCD,因为平面ABC,所以平面平面BCD【小问2详解】连接OD,又因为是边长为2的等边三角形,所以,由(1)知平面BCD,所以AO,BC,DO两两互相垂直以O为坐标原点,OA,OB,OD所在直线分别为x轴,y轴,z轴建立如图所示空间直角坐标系设,则O(0,0,0),A(0,0,m),B(1,0,0),C(-1,0,0),,因为A-BCD的体积为,所以,解得,即A(0,0,3),,∵,∴,设平面BCD的法向量为,,则,取平面BCD的法向量为,,,设是平面BDE的法向量,则,∴取平面BDE的法向量,解得或(舍)19、(1)(2)x=3或【解析】(1)首先利用点斜式求出直线的方程,再利用点到直线的距离公式求出圆心到直线的距离,最后利用垂直定理、勾股定理计算可得;(2)依题意可得点在圆外,分直线的斜率存在与不存在两种情况讨论,当直线的斜率不存在直线得到直线方程,但直线的斜率存在时设直线方程为,利用点到直线的距离公式得到方程,解得,即可得解;【小问1详解】解:根据题意,直线的方程为,即,则圆心到直线的距离为故;【小问2详解】解:根据题意,点在圆外,分两种情况讨论:当直线的斜率不存在时,过点的直线方程是,此时与圆C:相切,满足题意;当直线的斜率存在时,设直线方程为,即,直线与圆相切时,圆心到直线的距离为解得此时,直线的方程为,所以满足条件的直线的方程是或.20、(1);(2).【解析】(1)设出等比数列的公比,根据给定条件列出方程求解作答.(2)由(1)的结论求出,再利用分组求和法计算作答.【小问1详解】设等比数列公比为,依题意,,即,解得,所以的通项公式【小问2详解】由(1)知,,.21、(1);(2)存在,或.【解析】(1)根据题意,列出的方程组,求得,则椭圆方程得解;(2)对直线的斜率进行讨论,当斜率存在时,设出直线方程,联立椭圆方程,利用韦达定理,转化题意为,求解即可.小问1详解】由题意,得,设,将代入椭圆方程,得,所以,解得,所以椭圆的方程为.【小问2详解】当斜率不存在时,即时,,为椭圆短轴两端点,则以为直径的圆为,恒过点,满足题意;当斜率存在时,设,,,由得:,,解得:,,若以为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度甲乙双方合作开展教育培训机构的合同2篇
- 2024年度员工培训与人才交流协议3篇
- 绿化服务协议
- 风电场建设施工劳务分包合同
- 熟食卤味摊转让协议
- 教师与家长沟通技巧培训
- 2024版电力设施高空作业安全许可协议书2篇
- 蝉古诗课件教学课件
- 《swot分析模板》课件
- 《RAID技术资料》课件
- 生产运行维护及修理成本管理办法
- 城市公共空间设计理论与方法(课堂PPT)
- HG20592-97化工部标准法兰规格
- 汉语阅读教程第一册第八课
- 麦克维尔单螺杆冷水机组PFS.C样本
- CCTV雨污水管道检测缺陷内容判断依据判断标准
- 仓管员考核试题仓管员理论知识与业务技能试卷(含答案)
- 土地权属争议案件调查处理文书格
- 樱花栽培管理浅谈
- 《探究串并联电路中电流的规律》说课稿
- 医院回避制度
评论
0/150
提交评论