![湖南省湘西土家族苗族自治州2025届高一数学第一学期期末复习检测试题含解析_第1页](http://file4.renrendoc.com/view12/M01/0E/36/wKhkGWcP9TyAFYBlAAIMQir_fBk331.jpg)
![湖南省湘西土家族苗族自治州2025届高一数学第一学期期末复习检测试题含解析_第2页](http://file4.renrendoc.com/view12/M01/0E/36/wKhkGWcP9TyAFYBlAAIMQir_fBk3312.jpg)
![湖南省湘西土家族苗族自治州2025届高一数学第一学期期末复习检测试题含解析_第3页](http://file4.renrendoc.com/view12/M01/0E/36/wKhkGWcP9TyAFYBlAAIMQir_fBk3313.jpg)
![湖南省湘西土家族苗族自治州2025届高一数学第一学期期末复习检测试题含解析_第4页](http://file4.renrendoc.com/view12/M01/0E/36/wKhkGWcP9TyAFYBlAAIMQir_fBk3314.jpg)
![湖南省湘西土家族苗族自治州2025届高一数学第一学期期末复习检测试题含解析_第5页](http://file4.renrendoc.com/view12/M01/0E/36/wKhkGWcP9TyAFYBlAAIMQir_fBk3315.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省湘西土家族苗族自治州2025届高一数学第一学期期末复习检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中为偶函数的是()A. B.C. D.2.为了得到函数的图象,只需将函数图象上所有的点A.向左平行移动个单位长度 B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度3.定义在上的连续函数有下列的对应值表:01234560-1.2-0.22.1-23.22.4则下列说法正确是A.函数在上有4个零点 B.函数在上只有3个零点C.函数在上最多有4个零点 D.函数在上至少有4个零点4.将函数的图象先向左平移,然后将所得图象上所有的点的横坐标变为原来的倍(纵坐标不变),则所得到的图象对应的函数解析式为A. B.C. D.5.已知函数在R上为减函数,则实数a的取值范围是()A. B.C. D.6.命题:,的否定是()A., B.,C., D.,7.已知函数,且在内有且仅有两个不同的零点,则实数的取值范围是A. B.C. D.8.已知y=(x-m)(x-n)+2022(m<n),且α,β(α<β)是方程y=0的两根,则α,β,m,n的大小关系是()A.α<m<n<β B.m<α<n<βC.m<α<β<n D.α<m<β<n9.函数的定义域是()A. B.C.R D.10.设,且,则的最小值是()A. B.8C. D.16二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数的零点为,不等式的最小整数解为,则__________12.给出下列四个结论函数的最大值为;已知函数且在上是减函数,则a的取值范围是;在同一坐标系中,函数与的图象关于y轴对称;在同一坐标系中,函数与的图象关于直线对称其中正确结论序号是______13.已知幂函数的图象过点,则________14.在区间上随机取一个实数,则事件发生的概率为_________.15.已知函数在一个周期内的图象如图所示,图中,,则___________.16.计算:________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(,且)(1)求的值及函数的定义域;(2)若函数在上的最大值与最小值之差为3,求实数的值18.已知为奇函数,且(1)求的值;(2)判断在上的单调性,并用单调性定义证明19.已知函数,其中,再从条件①、条件②、条件③这三个条件中选择两个作为已知.条件①:;条件②:的最小正周期为;条件③:的图象经过点(1)求的解析式;(2)求的单调递增区间20.已知函数(1)求函数的最小正周期和单调递减区间;(2)求函数,的值域21.化简求值:(1);(2).
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】利用函数奇偶性的定义可判断A、B、C选项中各函数的奇偶性,利用特殊值法可判断D选项中函数的奇偶性.【详解】对于A选项,令,该函数的定义域为,,所以,函数为奇函数;对于B选项,令,该函数的定义域为,,所以,函数为偶函数;对于C选项,函数的定义域为,则函数为非奇非偶函数;对于D选项,令,则,,且,所以,函数为非奇非偶函数.故选:B.【点睛】本题考查函数奇偶性的判断,考查函数奇偶性定义的应用,考查推理能力,属于基础题.2、B【解析】根据诱导公式将函数变为正弦函数,再减去得到.【详解】函数又故将函数图像上的点向右平移个单位得到故答案为:B.【点睛】本题考查的是三角函数的平移问题,首先保证三角函数同名,不是同名通过诱导公式化为同名,在平移中符合左加右减的原则,在写解析式时保证要将x的系数提出来,针对x本身进行加减和伸缩.3、D【解析】由表格数据可知,连续函数满足,根据零点存在定理可得,在区间上,至少各有一个零点,所以函数在上至少有个零点,故选D.4、C【解析】把原函数解析式中的换成,得到y=sin2x+π6-π3的图象,再把的系数变成原来的【详解】将函数y=sin2x-π3的图象先向左平移,得到然后将所得图象上所有的点的横坐标变为原来的2倍(纵坐标不变),得到y=sin1故选:C5、D【解析】根据分段函数单调性,可得关于的不等式组,解不等式组即可确定的取值范围.【详解】函数在R上为减函数所以满足解不等式组可得.故选:D【点睛】本题考查了分段函数单调性的应用,根据分段函数的单调性求参数的取值范围,属于中档题.6、D【解析】由全称量词命题与存在量词命题的否定判断即可.【详解】由全称量词命题与存在量词命题的否定,可知原命题的否定为,故选:D7、C【解析】由,即,分别作出函数和的图象如图,由图象可知表示过定点的直线,当过时,此时两个函数有两个交点,当过时,此时两个函数有一个交点,所以当时,两个函数有两个交点,所以在内有且仅有两个不同的零点,实数的取值范围是,故选C.8、C【解析】根据二次函数的性质判断【详解】记,由题意,,的图象是开口向上的抛物线,所以上递减,在上递增,又,,所以,,即(也可由的图象向下平移2022个单位得的图象得出判断)故选:C9、A【解析】显然这个问题需要求交集.【详解】对于:,;对于:,;故答案为:A.10、B【解析】转化原式为,结合均值不等式即得解【详解】由题意,故则当且仅当,即时等号成立故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、8【解析】利用单调性和零点存在定理可知,由此确定的范围,进而得到.【详解】函数为上的增函数,,,函数的零点满足,,的最小整数解故答案为:.12、【解析】根据指数函数单调性可得二次函数的最值,求得的最小值为;根据对数函数的图象与性质,求得a的取值范围是;同一坐标系中,函数与的图象关于x轴对称;同一坐标系中,函数与的图象关于直线对称【详解】对于,函数的最大值为1,的最小值为,错误;对于,函数且在上是减函数,,解得a的取值范围是,错误;对于,在同一坐标系中,函数与的图象关于x轴对称,错误;对于,在同一坐标系中,函数与的图象关于直线对称,正确综上,正确结论的序号是故答案为【点睛】本题考查了指数函数与对数函数的性质与应用问题,是基础题13、3【解析】先求得幂函数的解析式,再去求函数值即可.【详解】设幂函数,则,则,则,则故答案为:314、【解析】由得:,∵在区间上随机取实数,每个数被取到的可能性相等,∴事件发生的概率为,故答案为考点:几何概型15、【解析】根据图象和已知信息求出的解析式,代值计算可得的值.【详解】由已知可得,在处附近单调递增,且,故,又因为点是函数在轴右侧的第一个对称中心,所以,,可得,故,因此,.故答案为:.16、【解析】由,利用正弦的和角公式求解即可【详解】原式,故答案为:【点睛】本题考查正弦的和角公式的应用,考查三角函数的化简问题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)0;;(2)或.【解析】(1)代入计算得,由对数有意义列出不等式求解作答.(2)由a值分类讨论单调性,再列式计算作答.【小问1详解】函数,则,由解得:,所以的值是0,的定义域是.【小问2详解】当时,在上单调递减,,,于是得,即,解得,则,当时,在上单调递增,,,于是得,即,解得,则,所以实数的值为或.18、(1);(2)递减,见解析【解析】(1)函数是奇函数,所以,得到,从而解得;(2)在区间上任取两个数,且,判断的符号,得到,由此证明函数的单调性.详解】(1)由题意知,则,解得;(2)函数在上单调递减,证明如下:在区间上任取两个数,且,因为,所以即,,所以即,函数在上单调递减.【点睛】本题考查由函数的奇偶性求参数,利用定义证明函数的单调性,属于基础题.19、(1)条件选择见解析,;(2)单调递增区间为,.【解析】(1)利用三角恒等变换化简得出.选择①②:由可求得的值,由正弦型函数的周期公式可求得的值,可得出函数的解析式;选择②③:由正弦型函数的周期公式可求得的值,由可求得的值,可得出函数的解析式;选择①③:由可求得的值,由结合可求得的值,可得出函数的解析式;(2)解不等式,可得出函数单调递增区间.【小问1详解】解:.选择①②:因为,所以,又因为的最小正周期为,所以,所以;选择②③:因为的最小正周期为,所以,则,又因为,所以,所以;选择①③:因为,所以,所以又因为,所以,所以,又因为,所以,所以【小问2详解】解:依题意,令,,解得,,所以的单调递增区间为,.20、(1),单调递减区间(2)【解析】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024民间借贷合同范本(28篇)
- 2025年农村子女抚养费用分担协议
- 2025年供电企业与用户用电合作协议
- 2025年共同策划健身房合作合同书
- 企业劳动合同协议2025年
- 2025年企业员工劳动合同补充协议范本
- 2025年铝合金预拉伸厚板和蒙皮铝合金板项目立项申请报告模范
- 2025年高性能陶瓷复合材料项目立项申请报告模板
- 2025年企业变更代理协议
- 2025年涨紧轮项目提案报告模板
- 中国人口研究专题报告-中国2025-2100年人口预测与政策建议-西南财经大学x清华大学-202501
- 建筑工程安全与管理
- 幼儿园开学教师安全知识培训
- 2024年山东水利职业学院高职单招职业技能测验历年参考题库(频考版)含答案解析
- 辽宁省名校联盟2025年高三1月份联合考试 语文试卷(含答案详解)
- 工厂厂区道路拆除实施方案
- 25版六年级寒假特色作业
- 浙江省杭州市9+1高中联盟2025届高三一诊考试英语试卷含解析
- 2025教科版一年级科学下册教学计划
- 中学生劳动安全课件
- 旅游行业智慧旅游营销策略与方案
评论
0/150
提交评论