定西市重点中学2025届高二数学第一学期期末质量检测试题含解析_第1页
定西市重点中学2025届高二数学第一学期期末质量检测试题含解析_第2页
定西市重点中学2025届高二数学第一学期期末质量检测试题含解析_第3页
定西市重点中学2025届高二数学第一学期期末质量检测试题含解析_第4页
定西市重点中学2025届高二数学第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

定西市重点中学2025届高二数学第一学期期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线的一个方向向量为,则直线的倾斜角为()A. B.C. D.2.当时,不等式恒成立,则实数的取值范围为()A. B.C. D.3.设等差数列前n项和是,若,则的通项公式可以是()A. B.C. D.4.若直线的倾斜角为120°,则直线的斜率为()A. B.C. D.5.已知双曲线的离心率为,则的渐近线方程为A. B.C. D.6.已知等差数列为其前项和,且,且,则()A.36 B.117C. D.137.三棱锥A-BCD中,E,F,H分别为边CD,AD,BC的中点,BE,DH的交点为G,则的化简结果为()A. B.C. D.8.双曲线的焦点坐标为()A. B.C. D.9.在空间直角坐标系中,点关于平面的对称点的坐标是()A. B.C. D.10.某市2016年至2020年新能源汽车年销量y(单位:百台)与年份代号x的数据如下表:年份20162017201820192020年份代号x01234年销量y1015m3035若根据表中的数据用最小二乘法求得y关于x的回归直线方程为,则表中m的值为()A.22 B.20C.30 D.32.511.若圆与直线相切,则实数的值为()A. B.或3C. D.或12.已知集合A=()A. B.C.或 D.二、填空题:本题共4小题,每小题5分,共20分。13.若点为圆上的一个动点,则点到直线距离的最大值为________14.某次实验得到如下7组数据,通过判断知道与具有线性相关性,其线性回归方程为,则______.(参考公式:)12345676.06.26.36.46.46.76.815.已知抛物线上一点到准线的距离为,到直线:的距离为,则的最小值为__________16.已知椭圆的左、右焦点分别为F1,F2,P为椭圆上一点,且(O为坐标原点).若,则椭圆的离心率为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线焦点是,斜率为的直线l经过F且与抛物线相交于A、B两点(1)求该抛物线的标准方程和准线方程;(2)求线段AB的长18.(12分)已知数列满足,(1)设,求证数列为等差数列,并求数列的通项公式;(2)设,数列的前n项和为,是否存在正整数m,使得对任意的都成立?若存在,求出m的最小值;若不存在,试说明理由19.(12分)已知数列是公差不为0的等差数列,首项,且成等比数列(1)求数列的通项公式;(2)设数列满足,求数列的前n项和20.(12分)在下列所给的三个条件中任选一个,补充在下面问题中,并完成解答(若选择多个条件分别解答,则按第一个解答计分).①与直线平行;②与直线垂直;③直线l的一个方向向量为;已知直线l过点,且___________.(1)求直线l的一般方程;(2)若直线l与圆C:相交于M,N两点,求弦长.21.(12分)已知椭圆C:的左右焦点分别为,,点P是椭圆C上位于第二象限的任一点,直线l是的外角平分线,过左焦点作l的垂线,垂足为N,延长交直线于点M,(其中O为坐标原点),椭圆C的离心率为(1)求椭圆C的标准方程;(2)过右焦点的直线交椭圆C于A,B两点,点T在线段AB上,且,点B关于原点的对称点为R,求面积的取值范围.22.(10分)已知椭圆的右焦点是椭圆上的一动点,且的最小值是1,当垂直长轴时,.(1)求椭圆的标准方程;(2)设直线与椭圆相切,且交圆于两点,求面积的最大值,并求此时直线方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由直线斜率与方向向量的关系算出斜率,然后可得.【详解】记直线的倾斜角为,由题知,又,所以,即.故选:A2、A【解析】设,对实数的取值进行分类讨论,求得,解不等式,综合可得出实数的取值范围.【详解】设,其中.①当时,即当时,函数在区间上单调递增,则,解得,此时不存在;②当时,,解得;③当时,即当时,函数在区间上单调递减,则,解得,此时不存在.综上所述,实数的取值范围是.故选:A.3、D【解析】根据题意可得公差的范围,再逐一分析各个选项即可得出答案.【详解】解:设等差数列的公差为,由,得,所以,故AB错误;若,则,与题意矛盾,故C错误;若,则,符合题意.故选:D.4、B【解析】求得倾斜角的正切值即得【详解】k=tan120°=.故选:B5、C【解析】,故,即,故渐近线方程为.【考点】本题考查双曲线的基本性质,考查学生的化归与转化能力.6、B【解析】根据等差数列下标的性质,,进而根据条件求出,然后结合等差数列的求和公式和下标性质求得答案.【详解】由题意,,即为递增数列,所以,又,又,联立方程组解得:.于是,.故选:B.7、D【解析】依题意可得为的重心,由三角形重心的性质可知,由中位线定理可知,再利用向量的加法运算法则即可求出结果【详解】解:依题意可得为的重心,,,分别为边,和的中点,,,故选:D8、C【解析】把双曲线方程化为标准形式,直接写出焦点坐标.【详解】,焦点在轴上,,故焦点坐标为.故选:C.9、C【解析】根据空间里面点关于面对称的性质即可求解.【详解】在空间直角坐标系中,点关于平面的对称点的坐标是.故选:C.10、B【解析】求出样本中心的横坐标,代入回归直线方程,求出样本中心的纵坐标,然后求解即可【详解】因为,代入回归直线方程为,所以,,于是得,解得故选:B11、D【解析】利用圆心到直线的距离等于半径可得答案.【详解】若圆与直线相切,则到直线的距离为,所以,解得,或.故选:D.12、A【解析】先求出集合,再根据集合的交集运算,即可求出结果.【详解】因为集合,所以.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、7【解析】根据给定条件求出圆C的圆心C到直线l的距离即可计算作答.【详解】圆的圆心,半径,点C到直线的距离,所以圆C上点P到直线l距离的最大值为.故答案为:714、9##【解析】求得样本中心点的坐标,代入回归直线,即可求得.详解】根据表格数据可得:故,解得.故答案为:.15、3【解析】根据抛物线的定义可知,点P到抛物线准线的距离等于点P到焦点F的距离,过焦点F作直线:的垂线,此时取得最小值,利用点到直线的距离公式,即可求解.【详解】由题意,抛物线的焦点坐标为,准线方程为,如图所示,根据抛物线的定义可知,点P到抛物线准线的距离等于点P到焦点F的距离,过焦点F作直线:的垂线,此时取得最小值,由点到直线的距离公式可得,即的最小值为3.【点睛】本题主要考查了抛物线的标准方程及其简单的几何性质的应用,以及抛物线的最值问题,其中解答中根据抛物线的定义可知,点P到抛物线准线的距离等于点P到焦点F的距离,利用点到直线的距离公式求解是解答的关键,着重考查了转化思想,以及运算与求解能力,属于中档试题.16、##【解析】由向量的数量积得,从而得,利用勾股定理和椭圆的定义可得的等式,从而求得离心率【详解】,所以,又,所以是直角三角形,,,又,,所以,,,所以故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)抛物线的方程为,其准线方程为,(2)【解析】(1)根据焦点可求出的值,从而求出抛物线的方程,即可得到准线方程;(2)设,,,,将直线的方程与抛物线方程联立消去,整理得,得到根与系数的关系,由抛物线的定义可知,代入即可求出所求【小问1详解】解:由焦点,得,解得所以抛物线的方程为,其准线方程为,【小问2详解】解:设,,,直线的方程为.与抛物线方程联立,得,消去,整理得,由抛物线定义可知,所以线段的长为18、(1);(2)存在,3【解析】(1)结合递推关系可证得bn+1-bn1,且b1=1,可证数列{bn}为等差数列,据此可得数列的通项公式;(2)结合通项公式裂项有求和有,再结合条件可得,即求【详解】(1)证明:∵,又由a1=2,得b1=1,所以数列{bn}是首项为1,公差为1的等差数列,所以bn=1+(n-1)×1=n,由,得(2)解:∵,,所以,依题意,要使对于n∈N*恒成立,只需,解得m≥3或m≤-4又m>0,所以m≥3,所以正整数m的最小值为319、(1);(2)【解析】(1)设数列的公差为d,根据等比中项的概念即可求出公差,再根据等差数列的通项公式即可求出答案;(2)由(1)得,再根据分组求和法即可求出答案【详解】解:(1)设数列的公差为d,由已知得,,即,解得或,又,∴,∴;(2)由(1)得,【点睛】本题主要考查等差数列的通项公式,考查数列的分组求和法,考查计算能力,属于基础题20、(1)若选择①②,则直线方程为:;若选择③,则直线方程为;(2)若选择①②,则;若选择③,则.【解析】(1)根据所选择的条件,结合直线过点,即可写出直线的方程;(2)利用(1)中所求直线方程,以及弦长公式,即可求得结果.【小问1详解】若选①与直线平行,则直线的斜率;又其过点,故直线的方程为,则其一般式为;若选②与直线垂直,则直线的斜率满足,解得;又其过点,故直线的方程为,则其一般式为;若选③直线l的一个方向向量为,则直线的斜率;又其过点,故直线的方程为,则其一般式为;综上所述:若选择①②,则直线方程为:;若选择③,则直线方程为.【小问2详解】对圆C:,其圆心为,半径,根据(1)中所求,若选择①②,则直线方程为,则圆心到直线的距离,则直线截圆所得弦长;若选择③,则直线方程为,则圆心到直线的距离,则直线截圆所得弦长.综上所述,若选择①②,则;若选择③,则.21、(1)(2)【解析】(1)根据题意可得到的值,结合椭圆的离心率,即可求得b,求得答案;(2)由可得,进一步推得,于是设直线方程和椭圆方程联立,利用根与系数的关系,求得弦长,表示出三角形AOB的面积,利用换元法结合二次函数的性质求其范围.【小问1详解】由题意可知:为的中点,为的中点,为的中位线,,,又,故,即,,又,,,椭圆的标准方程为;【小问2详解】由题意可知,,,①当过的直线与轴垂直时,,,②当过的直线不与轴垂直时,可设,,直线方程为,联立,可得:.,,,由弦长公式可知,到距离为,故,令,则原式变为,令,原式变为当时,故,由①②可知.【点睛】本题考查了椭圆方程的求解,以及直线和椭圆相交时的三角形的面积问题,考查学生的计算能力和数学素养,解答的关键是计算三角形面积时要理清运算的思路,准确计算.22、(1);(2),.【解析】(1)由的最小值为1,得到,再由,结合,求得的值,即可求得椭圆的方程.(2)设切线的方程为,联立方程组,根据直线与椭圆相切,求得,结合点到直线的距离公式和圆的弦长公式,求得的面积的表示,结合函数的单调性,即可求解.【详解】(1)由题意,点椭圆上的一动点,且的最小值是1,得,因为当垂直长轴时,可得,所以,即,又由,解得,所以椭圆的标准方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论