版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
苏州实验初中教育集团2024-2025学年第一学期阳光测评初二数学2024.10试卷分值:130分考试用时:120分钟一.选择题(共8小题,每小题3分)1.下列图形是几家电信公司的标志,其中是轴对称图形的是()A. B. C. D.2.下列说法正确的是()A.﹣81的平方根是﹣9 B.平方根等于它本身的数是1和0 C.的平方根是±9 D.立方根等于它本身的数是±1和03.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.BE=CD C.BD=CE D.AD=AE4.如图,某市的三个城镇中心A、B、C构成△ABC,该市政府打算修建一个大型体育中心P,使得该体育中心到三个城镇中心A、B、C的距离相等,则P点应设计在()三个角的角平分线的交点 B.三角形三条高的交点 C.三条边的垂直平分线的交点D.三角形三条中线的交点5.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:2:3 C.a2=c2﹣b2 D.a:b:c=4:4:66.如图,△ABC≌△A'BC',过点C作CD⊥BC',垂足为D,若∠ABA'=55°,则∠BCD的度数为()A.25° B.35° C.45° D.55°7.已知∠AOB=30°,在∠AOB内有一定点P,点M,N分别是OA,OB上的动点,若△PMN的周长最小值为3,则OP的长为()A.1.5 B.3 C. D.8.已知,如图,C为线段AE上一动点(不与A,E重合),在AE同侧分别作等边三角形ABC和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,OC,以下四个结论:①AD=BE;②△CPQ是等边三角形;③AD⊥BC;④OC平分∠AOE.其中正确的结论是()A.①、② B.③、④ C.①、②、③ D.①、②、④二.填空题(共8小题,每小题3分)9.等腰三角形的一边长为5,另一边长为11.则它的周长为.10.小明站在河岸边看见水中的自己胸前球衣的号码是,则实际的号码为.11.已知|=0,则x+y的平方根是.12.我国古代数学著作《九章算术》中“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”今译:一根竹子高1丈,折断后竹子顶端落地,离竹子底端3尺处.折断处离地面的高度是尺.(1丈=10尺)13.如图所示的网格是正方形网格,图形的各个顶点均为格点,则∠1+∠2=.14.如图,在四边形ABCD中,∠ABC=∠ADC=90°,E为对角线AC的中点,连接BE,ED,BD.若∠BAD=56°,则∠EDB的度数为度.15.如图,在△ABC中,AB=AC=13,BC=10,AD⊥BC于点D,BE⊥AC于点E,MN垂直平分AB,交AB于点M,交AC于点N,在MN上有一点P,则PB+PD的最小值为.16.如图,三角形纸片ABC,点D是BC边上一点,连接AD,把△ABD沿着AD翻折,得到△AED,DE与AC交于点G,连接BE交AD于点F.若DG=GE,AF=4,BF=2,△ADG的面积为,则点F到BC的距离为.三.解答题(共10小题,共82分)17.(8分)求下列各式中x的值:(1)9x2﹣25=0;(2)(x﹣1)3=27.18.(6分)已知某正数x的两个平方根分别是a﹣3和2a+15,y的立方根是﹣3.z是的整数部分.求x+y﹣2z的平方根.19.(8分)如图,在规格为8×8的边长为1个单位的正方形网格中(每个小正方形的边长为1),△ABC的三个顶点都在格点上,且直线m、n互相垂直.(1)画出△ABC关于直线n对称的△A'B'C';(2)在直线m上作出点P,使得△APB的周长最小;(保留作图痕迹)(3)在(2)的条件下,图中△APB的面积为.(请直接写出结果)20.(6分)如图,在△ABC中,∠A=∠C=15°,AB=5,求△ABC的面积.21.(8分)如图,在△ABC中,AB<AC,边BC的垂直平分线DE交△ABC的外角∠CAM的平分线于点D,垂足为E,DF⊥AC于点F,DG⊥AM于点G,连接CD.(1)求证:BG=CF;(2)若AB=10cm,AC=14cm,求AG的长.22.(8分)如图,CD⊥AB于D点,BE⊥AC于E点,BE,CD交于O点,且AO平分∠BAC.求证:OB=OC.23.(8分)今年,第十五号台风登陆江苏,A市接到台风警报时,台风中心位于A市正南方向52km的B处,正以8km/h的速度沿BC方向移动.已知A市到BC的距离AD=20km,(1)台风中心从B点移到D点经过多长时间?(2)如果在距台风中心25km的圆形区域内都将受到台风影响,那么A市受到台风影响的时间是多长?24.(10分)如图,在△ABC中,∠ACB=90°,AB=5,BC=3,点P从点A出发,沿射线AC以每秒2个单位长度的速度运动.设点P的运动时间为t秒(t>0).(1)当点P在AC的延长线上运动时,CP的长为;(用含t的代数式表示)(2)若点P在∠ABC的角平分线上,求t的值;(3)在整个运动中,直接写出△ABP是等腰三角形时t的值.25.(10分)我们新定义一种三角形:若一个三角形中存在两边的平方差等于第三边上高的平方,则称这个三角形为勾股高三角形,两边交点为勾股顶点.●特例感知①等腰直角三角形勾股高三角形(请填写“是”或者“不是”);②如图1,已知△ABC为勾股高三角形,其中C为勾股顶点,CD是AB边上的高.若BD=2AD=2,试求线段CD的长度.●深入探究如图2,已知△ABC为勾股高三角形,其中C为勾股顶点且CA>CB,CD是AB边上的高.试探究线段AD与CB的数量关系,并给予证明;●推广应用如图3,等腰△ABC为勾股高三角形,其中AB=AC>BC,CD为AB边上的高,过点D向BC边引平行线与AC边交于点E.若CE=a,试求线段DE的长度.26.(10分)如图,在△ABC中,∠ACB=90°,AC=BC,E点为射线CB上一动点,连接AE,将AE绕点A逆时针旋转90°,E点旋转至点F.(1)如图1,过F点作FG⊥AC交AC于G点,求证:△AGF≌△ECA;(2)如图2,连接BF交AC于D点,若,求证:CE是BE的2倍;(3)E是射线CB上一点,直线BF交直线AC于D点,若,则=。参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.C.2.D.3.B.4.C.5.D.6.B.7.B.8.D.二.填空题(共8小题,满分24分,每小题3分)9.2710.2111.±212.4.5513.135°14.3415.1216.三.解答题(共1小题,满分82分)17.(4分)(1)x=±;(4分)(2)x=4.18.(6分)x+y﹣2z的平方根是±4.19.(8分)解:(1)如图所示,△A'B'C'即为所求;(2)如图所示,点P即为所求;(3)S﹣=2,20.(6分)解:延长AB,作CD⊥AB的延长线于点D,∵∠A=∠C=15°,AB=5,∴BC=AB=5,∠DBC=∠A+∠BCA=30°,∴,∴△ABC的面积为:.21.(8分)(1)证明:连接BD,∵DE垂直平分BC,∴BD=CD,∵AD平分∠CAM,DF⊥AC,DG⊥AM,∴DG=DF,在Rt△BDG和Rt△CDF中,,∴Rt△BDG≌Rt△CDF(HL),∴BG=CF;(2)解:在Rt△ADG和Rt△ADF中,,∴Rt△ADG≌Rt△ADF(HL),∴AG=AF,∵AC=AF+CF,BG=AB+AG,BG=CF,∴AC=AF+AB+AG,∴AC=2AG+AB,∵AB=10cm,AC=14cm,∴AG==2cm.22.(8分)证明:∵BE⊥AC,CD⊥AB,∴∠ADC=∠BDC=∠AEB=∠CEB=90°.∵AO平分∠BAC,∴∠1=∠2.在△AOD和△AOE中,,∴△AOD≌△AOE(AAS).∴OD=OE.在△BOD和△COE中,,∴△BOD≌△COE(ASA).∴OB=OC.23.(8分)解:(1)由题意得,在Rt△ABD中,AB=52km,AD=20km∴,∴48÷8=6小时,即台风中心从B点移到D点需要6小时;(2)以A为圆心,以25km为半径画弧,交BC于P、Q,则A市在P点开始受到影响,离开Q点恰好不受影响(如图),由题意,AP=25km,在Rt△ADP中,,∵AP=AQ,∠ADB=90°,∴DP=DQ,∴PQ=30km,∴30÷8=3.75(小时)∴A市受台风影响的时间为3.75小时.24.(10分)解:(1)∵在△ABC中,∠ACB=90°,AB=5,BC=3,∴由勾股定理得:,∵已知点P从点A出发,以每秒2个单位长度的速度运动,∴当点P在AC的延长线上时,点P运动的长度为:AC+CP=2t,∵AC=4,∴CP=2t﹣AC=2t﹣4.故答案为:2t﹣4.(2)过点P作PM⊥AB于点M,如图所示:∵∠ACB=90°,∴PC⊥BC,∵点P在∠ABC的角平分线上,PM⊥AB,∴PC=PM,又∵PB=PB,∴Rt△PCB≌Rt△PMB(HL),∴CB=MB,∴AM=AB﹣MB=AB=BC=5﹣3=2,设PM=PC=x,则AP=4﹣x,在Rt△APM中,AM2+PM2=AP2,∴22+x2=(4﹣x)2,解得:,,即若点P在∠ABC的角平分线上,则t的值为.(3)当AB作为底边时,如图所示:则PA=PB,设PA=a,则PC=AC﹣AP=4﹣a,在Rt△PCB中,PB2=PC2+CB2,a2=(4﹣a)2+32,解得:,此时;当AB作为腰时,如图所示:AP1=AB=5,此时;AB=BP2时,∵BC⊥AP2,∴AP2=2AC=8,此时t=8÷2=4,综上分析可知,t的值为或或4.25.(10分)解:●特例感知:①是.②CB2=CD2+4,CA2=CD2+1,于是CD2=(CD2+4)﹣(CD2+1)=3,∴CD=.●深入探究:如图2中,由CA2﹣CB2=CD2可得:CA2﹣CD2=CB2,而CA2﹣CD2=AD2,∴AD2=CB2,即AD=CB;●推广应用:过点A向ED引垂线,垂足为G,∵“勾股高三角形”△ABC为等腰三角形,且AB=AC>BC,∴只能是AC2﹣BC2=CD2,由上问可知AD=BC……①.又ED∥BC,∴∠1=∠B……②.而∠AGD=∠CDB=90°……③,∴△AGD≌△CDB(AAS),∴DG=BD.易知△ADE与△ABC均为等腰三角形,根据三线合一原理可知ED=2DG=2BD.又AB=AC,AD=AE,∴BD=EC=a,∴ED=2a.26.(10分)(1)证明:如图1,由旋转的性质得:AE=AF,∠EAF=90°,∴∠EAC+∠DAG=90°,∵FG⊥AC,∴∠FGA=90°,∴∠ADG+∠FAG=90°,∴∠EAC=∠FAG,在△AGF和△ECA中,,∴△AGF≌△ECA(AAS);(2)证明:如图2,过点F作FG⊥AC于G点,∴∠FGD=∠C=90°,由(1)知△AGF≌△ECA,∴GA=CE,FG=AC,∵AC=BC,∴FG=BC,在△FDG和△BDC中,,∴△FDG≌△BDC(AAS),∴GD=CD,∵,∴AD=5CD,设CD=a,则AD=5a,GD=a,∴AG=AD﹣GD=4a,AC=AD+CD=6a,∴CE=AG=4a,BC=AC=6a,∴BE=BC﹣CE=2a,∴,即CE是BE的2倍;(3)如图3,当点E在线段CB上时,过点F作FG⊥AC于G点,∵,∴设BC=5x,BE=3x,∴CE=BC﹣BE=2x,由(1)知△AGF≌△ECA,∴GA=CE=2x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 英语人教新起点(一起)四年级下册-Unit 3 Lesson 2 Travel plans教学设计
- 人教版初中八年级数学上册《第十一章 三角形》大单元整体教学设计2022课标
- 儿科护理品管护理安全
- 《连续函数性质》课件
- 宫腔镜术前护理措施
- 《员工测试与甄选》课件
- 农民工法律培训
- 社会保险的历史演进
- 大班美术活动:我们上学去
- 医院急救设备应急调配机制
- 中国成人心肌炎临床诊断与治疗指南2024解读
- 电路分析基础(浙江大学)智慧树知到期末考试答案章节答案2024年浙江大学
- 建模师工作合同
- 2023年福建农商银行招聘考试真题
- 幼儿园大班美术课件:《我的手套真暖和》
- QBT 2460-1999 聚碳酸酯(PC)饮用水罐
- 软件开发项目验收方案
- 大学生生涯发展展示 (修改版)
- JT-T 1495-2024 公路水运危险性较大工程专项施工方案编制审查规程
- 康复治疗技术的职业规划课件
- 冬至知识选择题问答
评论
0/150
提交评论