版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、解答题1.如图,在平面直角坐标系中,直线与x轴交于点,与y轴交于点,且(1)求;(2)若为直线上一点.①的面积不大于面积的,求P点横坐标x的取值范围;②请直接写出用含x的式子表示y.(3)已知点,若的面积为6,请直接写出m的值.解析:(1)4;(2)①或;②;(3)或.【分析】(1)先根据偶次方和绝对值的非负性求出的值,从而可得点的坐标和的长,再利用直角三角形的面积公式即可得;(2)①分和两种情况,先分别求出和的面积,再根据已知条件建立不等式,解不等式即可得;②分和两种情况,利用、和的面积关系建立等式,化简即可得;(3)过点作轴的平行线,交直线于点,从而可得,再分、和三种情况,分别利用三角形的面积公式建立方程,解方程即可得.【详解】解:(1)由题意得:,解得,,,轴轴,;(2)①的面积不大于面积的,的面积小于的面积,则分以下两种情况:如图,当时,则,,因此有,解得,此时的取值范围为;如图,当时,则,,因此有,解得,此时的取值范围为,综上,点横坐标的取值范围为或;②当时,则,,由(2)①可知,,则,即;如图,当时,则,,,,,解得,综上,;(3)过点作轴的平行线,交直线于点,由(2)②可知,,则,由题意,分以下三种情况:①如图,当时,则,,解得,不符题设,舍去;②如图,当时,则,,解得或(不符题设,舍去);③如图,当时,则,,解得,符合题设,综上,的值为或.【点睛】本题考查了偶次方和绝对值的非负性、坐标与图形等知识点,较难的是题(3),正确分三种情况讨论是解题关键.2.如图:在四边形ABCD中,A、B、C、D四个点的坐标分别是:(-2,0)、(0,6)、(4,4)、(2,0)现将四边形ABCD先向上平移1个单位,再向左平移2个单位,平移后的四边形是A'B'C′D'(1)请画出平移后的四边形A'B'C′D'(不写画法),并写出A'、B'、C′、D'四点的坐标.(2)若四边形内部有一点P的坐标为(a,b)写点P的对应点P′的坐标.(3)求四边形ABCD的面积.解析:(1)图见解析,A′(-4,1),B′(-2,7),C′(2,5),D′(0,1);(2)P′的坐标为:(a-2,b+1);(3)四边形ABCD的面积为22.【分析】(1)直接利用平移画出图形,再根据图形写出对应点的坐标进而得出答案;(2)利用平移规律进而得出对应点坐标的变化规律:向上平移1个单位,纵坐标加1;向左平移2个单位,横坐标减2;(3)利用四边形ABCD所在的最小矩形面积减去周围三角形面积进而得出答案.【详解】解:(1)如图所示:A′(-4,1),B′(-2,7),C′(2,5),D′(0,1);(2)若四边形内部有一点P的坐标为(a,b)写点P的对应点P′的坐标为:(a-2,b+1);(3)四边形ABCD的面积为:6×6-×2×6-×2×4-×2×4=22.【点睛】此题主要考查了平移变换以及坐标系内四边形面积求法,正确得出对应点位置是解题关键.3.如图,在平面直角坐标系中,点的坐标分别是,现同时将点分别向上平移2个单位长度,再向右平移2个单位长度,得到的对应点.连接.(1)写出点的坐标并求出四边形的面积.(2)在轴上是否存在一点,使得的面积是面积的2倍?若存在,请求出点的坐标;若不存在,请说明理由.(3)若点是直线上一个动点,连接,当点在直线上运动时,请直接写出与的数量关系.解析:(1)点,点;12;(2)存在,点的坐标为和;(3)∠OFC=∠FOB-∠FCD,见解析.【解析】【分析】(1)根据点平移的规律易得点C的坐标为(0,2),点D的坐标为(6,2);(2)设点E的坐标为(x,0),根据△DEC的面积是△DEB面积的2倍和三角形面积公式得到,解得x=1或x=7,然后写出点E的坐标;(3)分类讨论:当点F在线段BD上,作FM∥AB,根据平行线的性质由MF∥AB得∠2=∠FOB,由CD∥AB得到CD∥MF,则∠1=∠FCD,所以∠OFC=∠FOB+∠FCD;同样得到当点F在线段DB的延长线上,∠OFC=∠FCD-∠FOB;当点F在线段BD的延长线上,得到∠OFC=∠FOB-∠FCD.【详解】解:(1)∵点A,B的坐标分别是(-2,0),(4,0),现同时将点A、B分别向上平移2个单位长度,再向右平移2个单位长度得到A,B的对应点C,D,∴点C的坐标为(0,2),点D的坐标为(6,2);四边形ABDC的面积=2×(4+2)=12;(2)存在.设点E的坐标为(x,0),∵△DEC的面积是△DEB面积的2倍,,解得x=1或x=7,∴点E的坐标为(1,0)和(7,0);(3)当点F在线段BD上,作FM∥AB,如图1,∵MF∥AB,∴∠2=∠FOB,∵CD∥AB,∴CD∥MF,∴∠1=∠FCD,∴∠OFC=∠1+∠2=∠FOB+∠FCD;当点F在线段DB的延长线上,作FN∥AB,如图2,∵FN∥AB,∴∠NFO=∠FOB,∵CD∥AB,∴CD∥FN,∴∠NFC=∠FCD,∴∠OFC=∠NFC-∠NFO=∠FCD-∠FOB;同样得到当点F在线段BD的延长线上,得到∠OFC=∠FOB-∠FCD.【点睛】本题考查了坐标与图形性质:利用点的坐标得到线段的长和线段与坐标轴的关系.也考查了平行线的性质和分类讨论的思想.4.在平面直角坐标系中,如图正方形的顶点,坐标分别为,,点,坐标分别为,,且,以为边作正方形.设正方形与正方形重叠部分面积为.(1)①当点与点重合时,的值为______;②当点与点重合时,的值为______.(2)请用含的式子表示,并直接写出的取值范围.解析:(1)①1;②;(2).【分析】(1)①②根据点F的坐标构建方程即可解决问题.(2)分四种情形:①如图1中,当1≤m≤2时,重叠部分是四边形BEGN.②如图2中,当0<m<1时,重叠部分是正方形EFGH.③如图3中,-1<m<时,重叠部分是矩形AEHN.④如图4中,当-≤m<0时,重叠部分是正方形EFGH.分别求解即可解决问题.【详解】解:(1)①当点F与点B重合时,由题意3m=3,∴m=1.②当点F与点A重合时,由题意3m=-1,∴m=,故答案为1,.(2)①当时,如图1.,..②当时,如图2...③当时,如图3.,.④当时,如图4...综上,.【点睛】本题属于四边形综合题,考查了正方形的性质,平移变换,四边形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.5.如图1,在平面直角坐标系中,点A为x轴负半轴上一点,点B为x轴正半轴上一点,C(0,a),D(b,a),其中a,b满足关系式:|a+3|+(b-a+1)2=0.(1)a=___,b=___,△BCD的面积为______;(2)如图2,若AC⊥BC,点P线段OC上一点,连接BP,延长BP交AC于点Q,当∠CPQ=∠CQP时,求证:BP平分∠ABC;(3)如图3,若AC⊥BC,点E是点A与点B之间一动点,连接CE,CB始终平分∠ECF,当点E在点A与点B之间运动时,的值是否变化?若不变,求出其值;若变化,请说明理由.解析:-3-46【解析】分析:(1)求出CD的长度,再根据三角形的面积公式列式计算即可得解;(2)根据等角的余角相等解答即可;(3)首先证明∠ACD=∠ACE,推出∠DCE=2∠ACD,再证明∠ACD=∠BCO,∠BEC=∠DCE=2∠ACD即可解决问题;详解:(1)解:如图1中,∵|a+3|+(b-a+1)2=0,∴a=-3,b=4,∵点C(0,-3),D(-4,-3),∴CD=4,且CD∥x轴,∴△BCD的面积=1212×4×3=6;故答案为-3,-4,6.(2)证明:如图2中,∵∠CPQ=∠CQP=∠OPB,AC⊥BC,∴∠CBQ+∠CQP=90°,又∵∠ABQ+∠CPQ=90°,∴∠ABQ=∠CBQ,∴BQ平分∠CBA.(3)解:如图3中,结论:=定值=2.理由:∵AC⊥BC,∴∠ACB=90°,∴∠ACD+∠BCF=90°,∵CB平分∠ECF,∴∠ECB=∠BCF,∴∠ACD+∠ECB=90°,∵∠ACE+∠ECB=90°,∴∠ACD=∠ACE,∴∠DCE=2∠ACD,∵∠ACD+∠ACO=90°,∠BCO+∠ACO=90°,∴∠ACD=∠BCO,∵C(0,-3),D(-4,-3),∴CD∥AB,∠BEC=∠DCE=2∠ACD,∴∠BEC=2∠BCO,∴=2.点睛:本题考查了坐标与图形性质,三角形的角平分线,三角形的面积,三角形的内角和定理,三角形的外角性质等知识,熟记性质并准确识图是解题的关键.6.如图,在长方形中,为平面直角坐标系的原点,点的坐标为,点的坐标为且、满足,点在第一象限内,点从原点出发,以每秒2个单位长度的速度沿着的线路移动.(1)点的坐标为___________;当点移动5秒时,点的坐标为___________;(2)在移动过程中,当点到轴的距离为4个单位长度时,求点移动的时间;(3)在的线路移动过程中,是否存在点使的面积是20,若存在直接写出点移动的时间;若不存在,请说明理由.解析:(1)(8,12),(0,10);(2)2秒或14秒;(3)存在,t=2.5s或【分析】(1)由非负数的性质可得a、b的值,据此可得点B的坐标;由点P运动速度和时间可得其运动5秒的路程,得到OP=10,从而得出其坐标;(2)先根据点P运动11秒判断出点P的位置,再根据三角形的面积公式求解可得;(3)分为点P在OC、BC上分类计算即可.【详解】解:(1)∵a,b满足,∴a=8,b=12,∴点B(8,12);当点P移动5秒时,其运动路程为5×2=10,∴OP=10,则点P坐标为(0,10),故答案为:(8,12)、(0,10);(2)由题意可得,第一种情况,当点P在OC上时,点P移动的时间是:4÷2=2秒,第二种情况,当点P在BA上时.点P移动的时间是:(12+8+8)÷2=14秒,所以在移动过程中,当点P到x轴的距离为4个单位长度时,点P移动的时间是2秒或14秒.(3)如图1所示:∵△OBP的面积=20,∴OP•BC=20,即×8×OP=20.解得:OP=5.∴此时t=2.5s如图2所示;∵△OBP的面积=20,∴PB•OC=20,即×12×PB=20.解得:BP=.∴CP=.∴此时t=,综上所述,满足条件的时间t=2.5s或【点睛】本题考查矩形的性质,三角形的面积,坐标与图形的性质,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.7.如图①,在平面直角坐标系中,点,,其中,是16的算术平方根,,线段由线段平移所得,并且点与点A对应,点与点对应.(1)点A的坐标为;点的坐标为;点的坐标为;(2)如图②,是线段上不同于的任意一点,求证:;(3)如图③,若点满足,点是线段OA上一动点(与点、A不重合),连交于点,在点运动的过程中,是否总成立?请说明理由.解析:(1),,;(2)证明见解析;(3)成立,理由见解析【分析】(1)根据算术平方根、立方根得、;再根据直角坐标系、平移的性质分析,即可得到答案;(2)根据平移的性质,得;根据平行线性质,分别推导得,,从而完成证明;(3)结合题意,根据平行线的性质,推导得、;结合(2)的结论,通过计算即可完成证明.【详解】(1)连接∵是16的算术平方根∴∴∴∵∴∴∴∵线段由线段平移所得,并且点与点A对应,点与点对应∴,∴故答案为:,,;(2)∵线段由线段平移所得∴,∴∵∴∵∴∴(3)∵∴∵∴∵∴,即∵∴∴∵∴∵,∴由(2)的结论得:,∵,∴∴∵∴∴∴在点运动的过程中,总成立.【点睛】本题考查了算术平方根、立方根、平行线、平移、直角坐标系的知识;解题的关键是熟练掌握直角坐标系、平移、平行线的性质,从而完成求解.8.如图,,直线与、分别交于点、,点在直线上,过点作,垂足为点.(1)如图1,求证:;(2)若点在线段上(不与、、重合),连接,和的平分线交于点请在图2中补全图形,猜想并证明与的数量关系;解析:(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,.【分析】(1)过点作,根据平行线的性质即可求解;(2)分两种情况:当点在上,当点在上,再过点作即可求解.【详解】(1)证明:如图,过点作,∴,∵,∴.∴.∵,∴,∴.(2)补全图形如图2、图3,猜想:或.证明:过点作.∴.∵,∴∴,∴.∵平分,∴.如图3,当点在上时,∵平分,∴,∵,∴,即.如图2,当点在上时,∵平分,∴.∴.即.【点睛】本题考查了平行线的基本性质、角平分线的基本性质及角的运算,解题的关键是准确作出平行线,找出角与角之间的数量关系.9.综合与探究(问题情境)王老师组织同学们开展了探究三角之间数量关系的数学活动(1)如图1,,点、分别为直线、上的一点,点为平行线间一点,请直接写出、和之间的数量关系;(问题迁移)(2)如图2,射线与射线交于点,直线,直线分别交、于点、,直线分别交、于点、,点在射线上运动,①当点在、(不与、重合)两点之间运动时,设,.则,,之间有何数量关系?请说明理由.②若点不在线段上运动时(点与点、、三点都不重合),请你画出满足条件的所有图形并直接写出,,之间的数量关系.解析:(1);(2)①,理由见解析;②图见解析,或【分析】(1)作PQ∥EF,由平行线的性质,即可得到答案;(2)①过作交于,由平行线的性质,得到,,即可得到答案;②根据题意,可对点P进行分类讨论:当点在延长线时;当在之间时;与①同理,利用平行线的性质,即可求出答案.【详解】解:(1)作PQ∥EF,如图:∵,∴,∴,,∵∴;(2)①;理由如下:如图,过作交于,∵,∴,∴,,∴;②当点在延长线时,如备用图1:∵PE∥AD∥BC,∴∠EPC=,∠EPD=,∴;当在之间时,如备用图2:∵PE∥AD∥BC,∴∠EPD=,∠CPE=,∴.【点睛】本题考查了平行线的性质,解题的关键是熟练掌握两直线平行同旁内角互补,两直线平行内错角相等,从而得到角的关系.10.已知,AB∥CD.点M在AB上,点N在CD上.(1)如图1中,∠BME、∠E、∠END的数量关系为:;(不需要证明)如图2中,∠BMF、∠F、∠FND的数量关系为:;(不需要证明)(2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数;(3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.解析:(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不变,30°【分析】(1)过E作EH∥AB,易得EH∥AB∥CD,根据平行线的性质可求解;过F作FH∥AB,易得FH∥AB∥CD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF-∠FND=180°,可求解∠BMF=60°,进而可求解;(3)根据平行线的性质及角平分线的定义可推知∠FEQ=∠BME,进而可求解.【详解】解:(1)过E作EH∥AB,如图1,∴∠BME=∠MEH,∵AB∥CD,∴HE∥CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN﹣∠END.如图2,过F作FH∥AB,∴∠BMF=∠MFK,∵AB∥CD,∴FH∥CD,∴∠FND=∠KFN,∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,即:∠BMF=∠MFN+∠FND.故答案为∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,∴2∠BME+2∠END+∠BMF﹣∠FND=180°,即2∠BMF+∠FND+∠BMF﹣∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小没发生变化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQ∥NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN﹣∠NEQ=(∠BME+∠END)﹣∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【点睛】本题主要考查平行线的性质及角平分线的定义,作平行线的辅助线是解题的关键.11.已知:直线AB∥CD,M,N分别在直线AB,CD上,H为平面内一点,连HM,HN.(1)如图1,延长HN至G,∠BMH和∠GND的角平分线相交于点E.求证:2∠MEN﹣∠MHN=180°;(2)如图2,∠BMH和∠HND的角平分线相交于点E.①请直接写出∠MEN与∠MHN的数量关系:;②作MP平分∠AMH,NQ∥MP交ME的延长线于点Q,若∠H=140°,求∠ENQ的度数.(可直接运用①中的结论)解析:(1)见解析;(2)①2∠MEN+∠MHN=360°;②20°【分析】(1)过点E作EP∥AB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即可得证.(2)①过点H作GI∥AB,利用(1)中结论2∠MEN﹣∠MHN=180°,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等得出∠AMH+∠HNC=360°﹣(∠BMH+∠HND),进而用等量代换得出2∠MEN+∠MHN=360°.②过点H作HT∥MP,由①的结论得2∠MEN+∠MHN=360°,∠H=140°,∠MEN=110°.利用平行线性质得∠ENQ+∠ENH+∠NHT=180°,由角平分线性质及邻补角可得∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°.继续使用等量代换可得∠ENQ度数.【详解】解:(1)证明:过点E作EP∥AB交MH于点Q.如答图1∵EP∥AB且ME平分∠BMH,∴∠MEQ=∠BME=∠BMH.∵EP∥AB,AB∥CD,∴EP∥CD,又NE平分∠GND,∴∠QEN=∠DNE=∠GND.(两直线平行,内错角相等)∴∠MEN=∠MEQ+∠QEN=∠BMH+∠GND=(∠BMH+∠GND).∴2∠MEN=∠BMH+∠GND.∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH.∴∠DHN=∠BMH﹣∠MHN.∴∠GND+∠BMH﹣∠MHN=180°,即2∠MEN﹣∠MHN=180°.(2)①:过点H作GI∥AB.如答图2由(1)可得∠MEN=(∠BMH+∠HND),由图可知∠MHN=∠MHI+∠NHI,∵GI∥AB,∴∠AMH=∠MHI=180°﹣∠BMH,∵GI∥AB,AB∥CD,∴GI∥CD.∴∠HNC=∠NHI=180°﹣∠HND.∴∠AMH+∠HNC=180°﹣∠BMH+180°﹣∠HND=360°﹣(∠BMH+∠HND).又∵∠AMH+∠HNC=∠MHI+∠NHI=∠MHN,∴∠BMH+∠HND=360°﹣∠MHN.即2∠MEN+∠MHN=360°.故答案为:2∠MEN+∠MHN=360°.②:由①的结论得2∠MEN+∠MHN=360°,∵∠H=∠MHN=140°,∴2∠MEN=360°﹣140°=220°.∴∠MEN=110°.过点H作HT∥MP.如答图2∵MP∥NQ,∴HT∥NQ.∴∠ENQ+∠ENH+∠NHT=180°(两直线平行,同旁内角互补).∵MP平分∠AMH,∴∠PMH=∠AMH=(180°﹣∠BMH).∵∠NHT=∠MHN﹣∠MHT=140°﹣∠PMH.∴∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°.∵∠ENH=∠HND.∴∠ENQ+∠HND+140°﹣90°+∠BMH=180°.∴∠ENQ+(HND+∠BMH)=130°.∴∠ENQ+∠MEN=130°.∴∠ENQ=130°﹣110°=20°.【点睛】本题考查了平行线的性质,角平分线的性质,邻补角,等量代换,角之间的数量关系运算,辅助线的作法,正确作出辅助线是解题的关键,本题综合性较强.12.点A,C,E在直线l上,点B不在直线l上,把线段AB沿直线l向右平移得到线段CD.(1)如图1,若点E在线段AC上,求证:B+D=BED;(2)若点E不在线段AC上,试猜想并证明B,D,BED之间的等量关系;(3)在(1)的条件下,如图2所示,过点B作PB//ED,在直线BP,ED之间有点M,使得ABE=EBM,CDE=EDM,同时点F使得ABE=nEBF,CDE=nEDF,其中n≥1,设BMD=m,利用(1)中的结论求BFD的度数(用含m,n的代数式表示).解析:(1)见解析;(2)当点E在CA的延长线上时,∠BED=∠D-∠B;当点E在AC的延长线上时,∠BED=∠BET-∠DET=∠B-∠D;(3)【分析】(1)如图1中,过点E作ET∥AB.利用平行线的性质解决问题.(2)分两种情形:如图2-1中,当点E在CA的延长线上时,如图2-2中,当点E在AC的延长线上时,构造平行线,利用平行线的性质求解即可.(3)利用(1)中结论,可得∠BMD=∠ABM+∠CDM,∠BFD=∠ABF+∠CDF,由此解决问题即可.【详解】解:(1)证明:如图1中,过点E作ET∥AB.由平移可得AB∥CD,∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET+∠DET=∠B+∠D.(2)如图2-1中,当点E在CA的延长线上时,过点E作ET∥AB.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠DET-∠BET=∠D-∠B.如图2-2中,当点E在AC的延长线上时,过点E作ET∥AB.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET-∠DET=∠B-∠D.(3)如图,设∠ABE=∠EBM=x,∠CDE=∠EDM=y,∵AB∥CD,∴∠BMD=∠ABM+∠CDM,∴m=2x+2y,∴x+y=m,∵∠BFD=∠ABF+∠CDF,∠ABE=n∠EBF,∠CDE=n∠EDF,∴∠BFD===.【点睛】本题属于几何变换综合题,考查了平行线的性质,角平分线的定义等知识,解题的关键是学会条件常用辅助线,构造平行线解决问题,属于中考常考题型.13.综合与实践背景阅读:在同一平面内,两条不重合的直线的位置关系有相交、平行,若两条不重合的直线只有一个公共点,我们就说这两条直线相交,若两条直线不相交,我们就说这两条直线互相平行两条直线的位置关系的性质和判定是几何的重要知识,是初中阶段几何合情推理的基础.已知:AM∥CN,点B为平面内一点,AB⊥BC于B.问题解决:(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,则∠EBC=.解析:(1);(2)见解析;(3)105°【分析】(1)通过平行线性质和直角三角形内角关系即可求解.(2)过点B作BG∥DM,根据平行线找角的联系即可求解.(3)利用(2)的结论,结合角平分线性质即可求解.【详解】解:(1)如图1,设AM与BC交于点O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠ABC=90°,∴∠A+∠AOB=90°,∠A+∠C=90°,故答案为:∠A+∠C=90°;(2)证明:如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.故答案为:105°.【点睛】本题考查平行线性质,画辅助线,找到角的和差倍分关系是求解本题的关键.14.已知,AB∥CD,点E在CD上,点G,F在AB上,点H在AB,CD之间,连接FE,EH,HG,∠AGH=∠FED,FE⊥HE,垂足为E.(1)如图1,求证:HG⊥HE;(2)如图2,GM平分∠HGB,EM平分∠HED,GM,EM交于点M,求证:∠GHE=2∠GME;(3)如图3,在(2)的条件下,FK平分∠AFE交CD于点K,若∠KFE:∠MGH=13:5,求∠HED的度数.解析:(1)见解析;(2)见解析;(3)40°【分析】(1)根据平行线的性质和判定解答即可;(2)过点H作HP∥AB,根据平行线的性质解答即可;(3)过点H作HP∥AB,根据平行线的性质解答即可.【详解】证明:(1)∵AB∥CD,∴∠AFE=∠FED,∵∠AGH=∠FED,∴∠AFE=∠AGH,∴EF∥GH,∴∠FEH+∠H=180°,∵FE⊥HE,∴∠FEH=90°,∴∠H=180°﹣∠FEH=90°,∴HG⊥HE;(2)过点M作MQ∥AB,∵AB∥CD,∴MQ∥CD,过点H作HP∥AB,∵AB∥CD,∴HP∥CD,∵GM平分∠HGB,∴∠BGM=∠HGM=∠BGH,∵EM平分∠HED,∴∠HEM=∠DEM=∠HED,∵MQ∥AB,∴∠BGM=∠GMQ,∵MQ∥CD,∴∠QME=∠MED,∴∠GME=∠GMQ+∠QME=∠BGM+∠MED,∵HP∥AB,∴∠BGH=∠GHP=2∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 炼油分离工程课程设计
- 2024年有偿借款合同范本:个人消费分期贷款6篇
- 小型策划方案
- 改进方案汇编四篇
- 新时代粮食安全演讲稿(17篇)
- 水果冷库课程设计
- 幼儿园新年游戏课程设计
- 招商方案模板九篇
- 建设工程消防质量承诺书范文(7篇)
- 2024年度企业信用评级担保合同3篇
- 新疆第十三师新星经济技术开发区管委会招聘笔试题库2024
- 2024-2030年中国毫米波行业市场发展趋势与前景展望战略分析报告
- 水利水电工程单元工程施工质量验收评定表及填表说明
- 建筑工地医疗急救设施
- 2024年全国初中数学竞赛试题含答案
- 软装公司运营计划书
- 医疗器械(耗材)项目售后服务能力及方案
- 中医临床基础研究设计方法与进展智慧树知到期末考试答案2024年
- 2024年黑龙江交通职业技术学院单招职业技能测试题库及答案解析
- 2023版《中国近现代史纲要》课后习题答案
- 投标技术服务和质保期服务计划
评论
0/150
提交评论