重难点01平行线(四种模型)(原卷版+解析)_第1页
重难点01平行线(四种模型)(原卷版+解析)_第2页
重难点01平行线(四种模型)(原卷版+解析)_第3页
重难点01平行线(四种模型)(原卷版+解析)_第4页
重难点01平行线(四种模型)(原卷版+解析)_第5页
已阅读5页,还剩101页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重难点01平行线(四种模型)目录题型一:M型(含锯齿形)题型二:笔尖型题型三:“鸡翅”型题型四:“骨折”型技巧方法技巧方法模型一:M模型如图,若AB//CD,你能确定∠B、∠D与∠BED的大小关系吗?解:∠B+∠D=∠DEB.理由如下:过点E作EF//AB又∵AB//CD.

∴EF//CD.

∴∠D=∠DEF.∠B=∠BEF.∴∠B+∠D=∠BEF+∠DEF=∠DEB

即∠B+∠D=∠DEB.模型二、笔尖型如图,AB//CD,探索∠B、∠D与∠DEB的大小关系?解:∠B+∠D+∠DEB=360°.理由如下:过点E作EF//AB.

又∵AB//CD.

∴EF//CD.

∴∠B+∠BEF=180°.

∠D+∠DEF=180°.∴∠B+∠D+∠DEB=∠B+∠D+∠BEF+∠DEF=360°.

即∠B+∠D+∠DEB=360°.模型三、“鸡翅”型如图,已知AB//CD,试猜想∠A、∠E、∠C的关系,并说明理由.解:∠AEC=∠A-∠C,

理由如下:过点E作EF//AB

又∵AB//CD.

∴EF//CD.

∴∠A+∠FEA=180°,

∠C+∠FEC=180°

∴∠AEC=∠FEC-∠FEA

=180°-∠C–(180°-∠A)

=∠A-∠C即:∠AEC=∠A-∠C模型四、“骨折模型”如图,已知BC//DE,试猜想∠A、∠B、∠D的关系,并说明理由.

解:∠BAD=∠D-∠B,理由如下:过点A作AG//BC又∵CB//DE.

∴AG//DE

∴∠GAB+∠B=180°,

∠GAD+∠D=180°

∴∠BAD=∠GAB-∠GAD

=180°-∠B–(180°-∠D)

=∠D-∠B

即:∠BAD=∠D-∠B注:平行线四大模型大题不可直接使用,必须证明后再用,选择填空满足条件即可直接用!

能力拓展能力拓展题型一:M型(含锯齿形)一、填空题1.(2023春·七年级课时练习)如图,已知,平分,平分,,,则的度数为___________.(用含n的式子表示)二、解答题2.(2023春·七年级课时练习)如图,,点E在直线AB,CD内部,且.(1)如图1,连接AC,若AE平分,求证:平分;(2)如图2,点M在线段AE上,①若,当直角顶点E移动时,与是否存在确定的数量关系?并说明理由;②若(为正整数),当直角顶点E移动时,与是否存在确定的数量关系?并说明理由.3.(2023春·七年级课时练习)如图:(1)如图1,,,,直接写出的度数.(2)如图2,,点为直线,间的一点,平分,平分,写出与之间的关系并说明理由.(3)如图3,与相交于点,点为内一点,平分,平分,若,,直接写出的度数.4.(2023春·七年级课时练习)问题情境:如图①,直线,点E,F分别在直线AB,CD上.(1)猜想:若,,试猜想______°;(2)探究:在图①中探究,,之间的数量关系,并证明你的结论;(3)拓展:将图①变为图②,若,,求的度数.5.(2023春·七年级课时练习)已知直线,直线EF分别与直线a,b相交于点E,F,点A,B分别在直线a,b上,且在直线EF的左侧,点P是直线EF上一动点(不与点E,F重合),设∠PAE=∠1,∠APB=∠2,∠PBF=∠3.(1)如图,当点在线段上运动时,试说明∠1+∠3=∠2;(2)当点P在线段EF外运动时有两种情况.①如图2写出∠1,∠2,∠3之间的关系并给出证明;②如图3所示,猜想∠1,∠2,∠3之间的关系(不要求证明).6.(2023春·七年级课时练习)已知直线AB//CD,EF是截线,点M在直线AB、CD之间.(1)如图1,连接GM,HM.求证:∠M=∠AGM+∠CHM;(2)如图2,在∠GHC的角平分线上取两点M、Q,使得∠AGM=∠HGQ.试判断∠M与∠GQH之间的数量关系,并说明理由.7.(2023春·全国·七年级专题练习)阅读下面内容,并解答问题.已知:如图1,,直线分别交,于点,.的平分线与的平分线交于点.(1)求证:;(2)填空,并从下列①、②两题中任选一题说明理由.我选择题.①在图1的基础上,分别作的平分线与的平分线交于点,得到图2,则的度数为.②如图3,,直线分别交,于点,.点在直线,之间,且在直线右侧,的平分线与的平分线交于点,则与满足的数量关系为.8.(2023春·江苏·七年级专题练习)如图1,,,,求的度数.小明的思路是:如图2,过作,通过平行线性质可求的度数.(1)请你按小明的思路,写出度数的求解过程;(2)如图3,,点在直线上运动,记,.①当点在线段上运动时,则与、之间有何数量关系?请说明理由;②若点不在线段上运动时,请直接写出与、之间的数量关系.9.(2023春·七年级课时练习)请在横线上填上合适的内容.(1)如图(1)已知//,则.解:过点作直线//.∴(

).(

)∵//,//,∴(

)//(

).(如果两条直线和第三条直线平行,那么这两直线平行)∴(

).(

).∴.∴.(2)如图②,如果//,则()10.(2023春·七年级课时练习)如图1,AB//CD,E是AB,CD之间的一点.(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并证明你的结论;(2)如图2,若∠BAE,∠CDE的角平分线交于点F,直接写出∠AFD与∠AED之间的数量关系;(3)将图2中的射线DC沿DE翻折交AF于点G得图3,若∠AGD的余角等于2∠E的补角,求∠BAE的大小.11.(2023春·七年级课时练习)已知AB//CD.(1)如图1,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D;(2)如图,连接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直线交于点F.①如图2,当点B在点A的左侧时,若∠ABC=50°,∠ADC=60°,求∠BFD的度数.②如图3,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BFD的度数.(用含有α,β的式子表示)12.(2023春·七年级课时练习)已知,AB∥CD.点M在AB上,点N在CD上.(1)如图1中,∠BME、∠E、∠END的数量关系为:;(不需要证明)如图2中,∠BMF、∠F、∠FND的数量关系为:;(不需要证明)(2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数;(3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.13.(2023春·七年级课时练习)如图1,点、分别在直线、上,,.(1)求证:;(提示:可延长交于点进行证明)(2)如图2,平分,平分,若,求与之间的数量关系;(3)在(2)的条件下,如图3,平分,点在射线上,,若,直接写出的度数.14.(2023春·七年级课时练习)已知ABCD,∠ABE的角分线与∠CDE的角分线相交于点F.(1)如图1,若BM、DM分别是∠ABF和∠CDF的角平分线,且∠BED=100°,求∠M的度数;(2)如图2,若∠ABM=∠ABF,∠CDM=∠CDF,∠BED=α°,求∠M的度数;(3)若∠ABM=∠ABF,∠CDM=∠CDF,请直接写出∠M与∠BED之间的数量关系.15.(2023春·七年级课时练习)已知直线AM、CN和点B在同一平面内,且AM∥CN,AB⊥BC.(1)如图1,求∠A和∠C之间的数量关系;(2)如图2,若BD⊥AM,垂足为D,求证:∠ABD=∠C;(3)如图3,已知点D、E、F都在直线AM上,且∠ABD=∠NCB,BF平分∠DBC,BE平分∠ABD.若∠FCB+∠NCF=180°,∠BFC=3∠DBE,请直接写出∠EBC的度数.16.(2021春·辽宁大连·七年级统考期中)如图,,点在直线上,点在直线和之间,,平分.(1)求的度数(用含的式子表示);(2)过点作交的延长线于点,作的平分线交于点,请在备用图中补全图形,猜想与的位置关系,并证明;(3)将(2)中的“作的平分线交于点”改为“作射线将分为两个部分,交于点”,其余条件不变,连接,若恰好平分,请直接写出__________(用含的式子表示).题型二:笔尖型一、单选题1.(2023春·七年级课时练习)①如图1,,则;②如图2,,则;③如图3,,则;④如图4,直线EF,点在直线上,则.以上结论正确的个数是(

)A.1个 B.2个 C.3个 D.4个二、填空题2.(2023春·七年级课时练习)如图,若直线l1∥l2,∠α=∠β,∠1=30°则∠2的度数为___.3.(2023春·七年级课时练习)如图,直线a与∠AOB的一边射线OA相交,∠1=130°,向下平移直线a得到直线b,与∠AOB的另一边射线OB相交,则∠2+∠3=___.三、解答题4.(2021春·山东德州·七年级统考期中)(1)如图1,,,,则;(2)如图2,,点在射线上运动,当点在、两点之间运动时,,,求与、之间的数量关系,并说明理由;(3)在(2)的条件下,如果点在、两点外侧运动时(点与点、、三点不重合),请你直接写出与、之间的数量关系.5.(2023春·全国·七年级专题练习)(1)如图(1)AB∥CD,猜想∠BPD与∠B、∠D的关系,说出理由.(2)观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,并说明理由.(3)观察图(3)和(4),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,不需要说明理由.6.(2021春·安徽合肥·七年级统考期末)问题情景:如图1,AB∥CD,∠PAB=140°,∠PCD=135°,求∠APC的度数.(1)丽丽同学看过图形后立即口答出:∠APC=85°,请补全她的推理依据.如图2,过点P作PE∥AB,因为AB∥CD,所以PE∥CD.()所以∠A+∠APE=180°,∠C+∠CPE=180°.()因为∠PAB=140°,∠PCD=135°,所以∠APE=40°,∠CPE=45°,∠APC=∠APE+∠CPE=85°.问题迁移:(2)如图3,AD∥BC,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β,求∠CPD与∠α、∠β之间有什么数量关系?请说明理由.(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请直接写出∠CPD与∠α、∠β之间的数量关系.7.(2023春·全国·七年级专题练习)已知直线AB∥CD,P为平面内一点,连接PA、PD.(1)如图1,已知∠A=50°,∠D=150°,求∠APD的度数;(2)如图2,判断∠PAB、∠CDP、∠APD之间的数量关系为.(3)如图3,在(2)的条件下,AP⊥PD,DN平分∠PDC,若∠PAN+∠PAB=∠APD,求∠AND的度数.8.(2022春·贵州黔南·七年级统考阶段练习)综合与探究:(1)问题情境:如图1,.求的度数.小明想到一种方法,但是没有解答完:如图2,过P作,∴.∴.∵.∴.…………请你帮助小明完成剩余的解答.(2)问题探究:请你依据小明的思路,解答下面的问题:如图3,,点P在射线上运动,.当点P在A,B两点之间时,之间有何数量关系?请说明理由.9.(2023春·全国·七年级专题练习)(1)问题发现如图①,直线,是与之间的一点,连接,,可以发现:,请你写出证明过程;(2)拓展探究如果点运动到图②所示的位置,其他条件不变,求证:.(3)解决问题如图③,,,,则________.(直接写出结论,不用写计算过程)10.(2023春·七年级课时练习)阅读下面材料,完成(1)~(3)题.数学课上,老师出示了这样—道题:如图1,已知点分别在上,.求的度数.同学们经过思考后,小明、小伟、小华三位同学用不同的方法添加辅助线,交流了自己的想法:小明:“如图2,通过作平行线,发现,由已知可以求出的度数.”小伟:“如图3这样作平行线,经过推理,得也能求出的度数.”小华:∵如图4,也能求出的度数.”(1)请你根据小明同学所画的图形(图2),描述小明同学辅助线的做法,辅助线:______;(2)请你根据以上同学所画的图形,直接写出的度数为_________°;老师:“这三位同学解法的共同点,都是过一点作平行线来解决问题,这个方法可以推广.”请大家参考这三位同学的方法,使用与他们类似的方法,解决下面的问题:(3)如图,,点分别在上,平分若请探究与的数量关系((用含的式子表示),并验证你的结论.11.(2023春·七年级课时练习)问题情境:如图1,,,,求的度数.思路点拨:小明的思路是:如图2,过P作,通过平行线性质,可分别求出、的度数,从而可求出的度数;小丽的思路是:如图3,连接,通过平行线性质以及三角形内角和的知识可求出的度数;小芳的思路是:如图4,延长交的延长线于E,通过平行线性质以及三角形外角的相关知识可求出的度数.问题解决:请从小明、小丽、小芳的思路中任选一种思路进行推理计算,你求得的的度数为°;问题迁移:(1)如图5,,点P在射线上运动,当点P在A、B两点之间运动时,,.、、之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出、、间的数量关系.12.(2023春·七年级课时练习)已知直线,点A,C分别在,上,点B在直线,之间,且.(1)如图①,求证:.阅读并将下列推理过程补齐完整:过点B作,因为,所以__________(

)所以,(

)所以.(2)如图②,点D,E在直线上,且,BE平分.求证:;(3)在(2)的条件下,如果的平分线BF与直线平行,试确定与之间的数量关系,并说明理由.13.(2023春·七年级课时练习)已知,定点,分别在直线,上,在平行线,之间有一动点.(1)如图1所示时,试问,,满足怎样的数量关系?并说明理由.(2)除了(1)的结论外,试问,,还可能满足怎样的数量关系?请画图并证明(3)当满足,且,分别平分和,①若,则__________°.②猜想与的数量关系.(直接写出结论)题型三:“鸡翅”型一、解答题1.(2021春·浙江台州·七年级统考期末)如图,已知于点A,AE∥CD交于点E,且于点F.求证:.证明:∵于点A,于点F,(已知)∴.(垂直的定义)∴AD∥EF,(

)∴__________(

)∵AE∥CD,(已知)∴________.(两直线平行,同位角相等)∵,∴.(等量代换)2.(2023春·七年级课时练习)(1)已知:如图(a),直线.求证:;(2)如图(b),如果点C在AB与ED之外,其他条件不变,那么会有什么结果?你还能就本题作出什么新的猜想?3.(2022·全国·七年级假期作业)已知,,.(1)如图1,求证:;(2)如图2,作的平分线交于点,点为上一点,连接,若的平分线交线段于点,连接,若,过点作交的延长线于点,且,求的度数.4.(2023春·七年级课时练习)直线,A是上一点,B是上一点,直线和直线,交于点C和D,在直线CD上有一点P.(1)如果P点在C、D之间运动时,问、、有怎样的数量关系?请说明理由.(2)若点P在C、D两点的外侧运动时(P点与点C、D不重合),试探索、、之间的关系又是如何?(请直接写出答案,不需要证明)5.(2023春·七年级课时练习)已知,点为平面内一点,于.(1)如图1,点在两条平行线外,则与之间的数量关系为______;(2)点在两条平行线之间,过点作于点.①如图2,说明成立的理由;②如图3,平分交于点平分交于点.若,求的度数.题型四:“骨折”型一、填空题1.(2023春·全国·七年级专题练习)如图,如果AB∥EF,EF∥CD,则∠1,∠2,∠3的关系式__________.2.(2023春·全国·七年级专题练习)如图所示,AB∥CD,∠E=37°,∠C=20°,则∠EAB的度数为__________.3.(2023春·全国·七年级专题练习)如图,已知∠ABC=80°,∠CDE=140°,则∠BCD=_____.4.(2023春·全国·七年级专题练习)如图,若,则∠1+∠3-∠2的度数为______二、解答题5.(2023春·七年级课时练习)(1)如图,AB//CD,CF平分∠DCE,若∠DCF=30°,∠E=20°,求∠ABE的度数;(2)如图,AB//CD,∠EBF=2∠ABF,CF平分∠DCE,若∠F的2倍与∠E的补角的和为190°,求∠ABE的度数.(3)如图,P为(2)中射线BE上一点,G是CD上任一点,PQ平分∠BPG,GN//PQ,GM平分∠DGP,若∠B=30°,求∠MGN的度数.6.(2023春·全国·七年级专题练习)(1)如图1,l1∥l2,求∠A1+∠A2+∠A3=______.(直接写出结果)(2)如图2,l1∥l2,求∠A1+∠A2+∠A3+∠A4=_____.(直接写出结果)(3)如图3,l1∥l2,求∠A1+∠A2+∠A3+∠A4+∠A5=_______.(直接写出结果)(4)如图4,l1∥l2,求∠A1+∠A2+…+∠An=_______.(直接写出结果)7.(2023春·七年级课时练习)如图1,MN∥PQ,点C、B分别在直线MN、PQ上,点A在直线MN、PQ之间.(1)求证:∠CAB=∠MCA+∠PBA;(2)如图2,CD∥AB,点E在PQ上,∠ECN=∠CAB,求证:∠MCA=∠DCE;(3)如图3,BF平分∠ABP,CG平分∠ACN,AF∥CG.若∠CAB=60°,求∠AFB的度数.8.(2021春·山西晋中·七年级统考期中)综合与探究【问题情境】王老师组织同学们开展了探究三角之间数量关系的数学活动(1)如图1,,点、分别为直线、上的一点,点为平行线间一点,请直接写出、和之间的数量关系;【问题迁移】(2)如图2,射线与射线交于点,直线,直线分别交、于点、,直线分别交、于点、,点在射线上运动,①当点在、(不与、重合)两点之间运动时,设,.则,,之间有何数量关系?请说明理由.②若点不在线段上运动时(点与点、、三点都不重合),请你画出满足条件的所有图形并直接写出,,之间的数量关系.重难点01平行线(四种模型)目录题型一:M型(含锯齿形)题型二:笔尖型题型三:“鸡翅”型题型四:“骨折”型技巧方法技巧方法模型一:M模型如图,若AB//CD,你能确定∠B、∠D与∠BED的大小关系吗?解:∠B+∠D=∠DEB.理由如下:过点E作EF//AB又∵AB//CD.

∴EF//CD.

∴∠D=∠DEF.∠B=∠BEF.∴∠B+∠D=∠BEF+∠DEF=∠DEB

即∠B+∠D=∠DEB.模型二、笔尖型如图,AB//CD,探索∠B、∠D与∠DEB的大小关系?解:∠B+∠D+∠DEB=360°.理由如下:过点E作EF//AB.

又∵AB//CD.

∴EF//CD.

∴∠B+∠BEF=180°.

∠D+∠DEF=180°.∴∠B+∠D+∠DEB=∠B+∠D+∠BEF+∠DEF=360°.

即∠B+∠D+∠DEB=360°.模型三、“鸡翅”型如图,已知AB//CD,试猜想∠A、∠E、∠C的关系,并说明理由.解:∠AEC=∠A-∠C,

理由如下:过点E作EF//AB

又∵AB//CD.

∴EF//CD.

∴∠A+∠FEA=180°,

∠C+∠FEC=180°

∴∠AEC=∠FEC-∠FEA

=180°-∠C–(180°-∠A)

=∠A-∠C即:∠AEC=∠A-∠C模型四、“骨折模型”如图,已知BC//DE,试猜想∠A、∠B、∠D的关系,并说明理由.

解:∠BAD=∠D-∠B,理由如下:过点A作AG//BC又∵CB//DE.

∴AG//DE

∴∠GAB+∠B=180°,

∠GAD+∠D=180°

∴∠BAD=∠GAB-∠GAD

=180°-∠B–(180°-∠D)

=∠D-∠B

即:∠BAD=∠D-∠B注:平行线四大模型大题不可直接使用,必须证明后再用,选择填空满足条件即可直接用!

能力拓展能力拓展题型一:M型(含锯齿形)一、填空题1.(2023春·七年级课时练习)如图,已知,平分,平分,,,则的度数为___________.(用含n的式子表示)【答案】【分析】首先过点E作,由平行线的传递性得,再根据两直线平行,内错角相等,得出,,由角平分线的定义得出,,再由两直线平行,内错角相等得出,由即可得出答案.【详解】解:如图,过点E作,则,,∴,,又∵平分,平分,∴,,∵,∴,,∴,故答案为:.【点睛】本题考查平行线的性质,角平分线的定义,解题关键是作出正确的辅助线,掌握平行线的性质和角平分线的定义.二、解答题2.(2023春·七年级课时练习)如图,,点E在直线AB,CD内部,且.(1)如图1,连接AC,若AE平分,求证:平分;(2)如图2,点M在线段AE上,①若,当直角顶点E移动时,与是否存在确定的数量关系?并说明理由;②若(为正整数),当直角顶点E移动时,与是否存在确定的数量关系?并说明理由.【答案】(1)见解析;(2)①∠BAE+∠MCD=90°,理由见解析;②∠BAE+∠MCD=90°,理由见解析.【分析】(1)根据平行的性质可得∠BAC+∠DCA=180°,再根据可得∠EAC+∠ECA=90°,根据AE平分∠BAC可得∠BAE=∠EAC,等量代换可得∠ECD+∠EAC=90°,继而求得∠DCE=∠ECA;(2)①过E作EF∥AB,先利用平行线的传递性得出EF∥AB∥CD,再利用平行线的性质及已知条件可推得答案;②过E作EF∥AB,先利用平行线的传递性得出EF∥AB∥CD,再利用平行线的性质及已知条件可推得答案.【详解】(1)解:因为,所以∠BAC+∠DCA=180°,因为,所以∠EAC+∠ECA=90°,因为AE平分∠BAC,所以∠BAE=∠EAC,所以∠BAE+∠DCE=90°,所以∠EAC+∠DCE=90°,所以∠DCE=∠ECA,所以CE平分∠ACD;(2)①∠BAE与∠MCD存在确定的数量关系:∠BAE+∠MCD=90°,理由如下:过E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠BAE=∠AEF,∠FEC=∠DCE,∵∠E=90°,∴∠BAE+∠ECD=90°,∵∠MCE=∠ECD,∴∠BAE+∠MCD=90°;②∠BAE与∠MCD存在确定的数量关系:∠BAE+∠MCD=90°,理由如下:过E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠BAE=∠AEF,∠FEC=∠DCE,∵∠E=90°,∴∠BAE+∠ECD=90°,∵∠MCE=∠ECD,∴∠BAE+∠MCD=90°.【点睛】本题主要考查平行线的性质和角平分线的定义,解决本题的关键是要添加辅助线利用平行性质.3.(2023春·七年级课时练习)如图:(1)如图1,,,,直接写出的度数.(2)如图2,,点为直线,间的一点,平分,平分,写出与之间的关系并说明理由.(3)如图3,与相交于点,点为内一点,平分,平分,若,,直接写出的度数.【答案】(1)∠BED=66°;(2)∠BED=2∠F,见解析;(3)∠BED的度数为130°.【分析】(1)首先作EF∥AB,根据直线AB∥CD,可得EF∥CD,所以∠ABE=∠1=45°,∠CDE=∠2=21°,据此推得∠BED=∠1+∠2=66°;(2)首先作EG∥AB,延长DE交BF于点H,利用三角形的外角性质以及角平分线的定义即可得到∠BED=2∠F;(3)延长DF交AB于点H,延长GE到I,利用三角形的外角性质以及角平分线的定义即可得到∠BED的度数为130°.【详解】(1)解:(1)如图,作EF∥AB,,∵直线AB∥CD,∴EF∥CD,∴∠ABE=∠1=45°,∠CDE=∠2=21°,∴∠BED=∠1+∠2=66°;(2)解:∠BED=2∠F,理由是:过点E作EG∥AB,延长DE交BF于点H,∵AB∥CD,∴AB∥CD∥EG,∴∠5=∠1+∠2,∠6=∠3+∠4,又∵BF平分∠ABE,DF平分∠CDE,∴∠2=∠1,∠3=∠4,则∠5=2∠2,∠6=2∠3,∴∠BED=2(∠2+∠3),又∠F+∠3=∠BHD,∠BHD+∠2=∠BED,∴∠3+∠2+∠F=∠BED,综上∠BED=∠F+12∠BED,即∠BED=2∠F;(3)解:延长DF交AB于点H,延长GE到I,∵∠BGD=60°,∴∠3=∠1+∠BGD=∠1+60°,∠BFD=∠2+∠3=∠2+∠1+60°=95°,∴∠2+∠1=35°,即2(∠2+∠1)=70°,∵BF平分∠ABE,DF平分∠CDE,∴∠ABE=2∠2,∠CDE=2∠1,∴∠BEI=∠ABE+∠BGE=2∠2+∠BGE,∠DEI=∠CDE+∠DGE=2∠1+∠DGE,∴∠BED=∠BEI+∠DEI=2(∠2+∠1)+(∠BGE+∠DGE)=70°+60°=130°,∴∠BED的度数为130°.【点睛】本题考查了平行线的判定和性质,三角形的外角性质等知识,掌握平行线的判定和性质,正确添加辅助线是解题关键.4.(2023春·七年级课时练习)问题情境:如图①,直线,点E,F分别在直线AB,CD上.(1)猜想:若,,试猜想______°;(2)探究:在图①中探究,,之间的数量关系,并证明你的结论;(3)拓展:将图①变为图②,若,,求的度数.【答案】(1)(2);证明见详解(3)【分析】(1)过点作,利用平行的性质就可以求角度,解决此问;(2)利用平行线的性质求位置角的数量关系,就可以解决此问;(3)分别过点、点作、,然后利用平行线的性质求位置角的数量关系即可.【详解】(1)解:如图过点作,∵,∴.∴,.∵,,∴∴.∵,∴∠P=80°.故答案为:;(2)解:,理由如下:如图过点作,∵,∴.∴,.∴∵,.(3)如图分别过点、点作、∵,∴.∴,,.∴∵,,,∴∴故答案为:.【点睛】本题考查了平行线的性质定理,准确的作出辅助线和正确的计算是解决本题的关键.5.(2023春·七年级课时练习)已知直线,直线EF分别与直线a,b相交于点E,F,点A,B分别在直线a,b上,且在直线EF的左侧,点P是直线EF上一动点(不与点E,F重合),设∠PAE=∠1,∠APB=∠2,∠PBF=∠3.(1)如图,当点在线段上运动时,试说明∠1+∠3=∠2;(2)当点P在线段EF外运动时有两种情况.①如图2写出∠1,∠2,∠3之间的关系并给出证明;②如图3所示,猜想∠1,∠2,∠3之间的关系(不要求证明).【答案】(1)证明见详解(2)①;证明见详解;②;证明见详解【分析】(1)如图4过点作,利用平行线的传递性可知,根据平行线的性质可知,,根据等量代换就可以得出;(2)①如图5过点作,利用平行线的传递性可知,根据平行线的性质可知,,根据等量代换就可以得出;②如图6过点作,利用平行线的传递性可知,根据平行线的性质可知,,根据等量代换就可以得出.【详解】(1)解:如图4所示:过点作,∵∴∴,,∵,∴;(2)解:①如图5过点作,∵∴∴,,∵,∴;②如图6过点作,∵∴∴,,∵,∴.【点睛】本题利用“猪蹄模型”及其变式考查了利用平行线的性质求角之间的数量关系,准确的作出辅助线和找到对应的内错角是解决本题的关键.6.(2023春·七年级课时练习)已知直线AB//CD,EF是截线,点M在直线AB、CD之间.(1)如图1,连接GM,HM.求证:∠M=∠AGM+∠CHM;(2)如图2,在∠GHC的角平分线上取两点M、Q,使得∠AGM=∠HGQ.试判断∠M与∠GQH之间的数量关系,并说明理由.【答案】(1)证明见详解(2);理由见详解【分析】(1)过点作,由,可知.由此可知:,,故;(2)由(1)可知.再由,∠AGM=∠HGQ,可知:,利用三角形内角和是180°,可得.【详解】(1)解:如图:过点作,∴,∴,,∵,∴.(2)解:,理由如下:如图:过点作,由(1)知,∵平分,∴,∵∠AGM=∠HGQ,∴,∵,∴.【点睛】本题考查了利用平行线的性质求角之间的数量关系,正确的作出辅助线是解决本题的关键,同时这也是比较常见的几何模型“猪蹄模型”的应用.7.(2023春·全国·七年级专题练习)阅读下面内容,并解答问题.已知:如图1,,直线分别交,于点,.的平分线与的平分线交于点.(1)求证:;(2)填空,并从下列①、②两题中任选一题说明理由.我选择题.①在图1的基础上,分别作的平分线与的平分线交于点,得到图2,则的度数为.②如图3,,直线分别交,于点,.点在直线,之间,且在直线右侧,的平分线与的平分线交于点,则与满足的数量关系为.【答案】(1)见解析(2)①;②结论:【分析】(1)利用平行线的性质解决问题即可;(2)①利用基本结论求解即可;②利用基本结论,,求解即可.【详解】(1)证明:如图,过作,,,,,平分,平分,,,,在中,,,;(2)解:①如图2中,由题意,,平分,平分,,,故答案为:;②结论:.理由:如图3中,由题意,,,平分,平分,,,,故答案为:.【点睛】本题考查平行线的性质和判定,角平分线的性质,垂直的定义,解题的关键是熟练掌握相关的性质.8.(2023春·江苏·七年级专题练习)如图1,,,,求的度数.小明的思路是:如图2,过作,通过平行线性质可求的度数.(1)请你按小明的思路,写出度数的求解过程;(2)如图3,,点在直线上运动,记,.①当点在线段上运动时,则与、之间有何数量关系?请说明理由;②若点不在线段上运动时,请直接写出与、之间的数量关系.【答案】(1)见解析;(2)①,见解析;②【分析】(1)过作,利用平行线的性质即可得出答案;(2)①过作,再利用平行线的性质即可得出答案;②分在延长线上和在延长线上两种情况进行讨论,结合平行线的性质即可得出答案【详解】解:(1)如图2,过作,,,,,,,,.(2)①、,理由:如图3,过作,,,,,;②、.如备用图1,当在延长线上时,;理由:如备用图1,过作,,,,,;如备用图2所示,当在延长线上时,;理由:如备用图2,过P作,,,,,;综上所述,.【点睛】本题考查的是平行线的性质,解题的关键是过作.9.(2023春·七年级课时练习)请在横线上填上合适的内容.(1)如图(1)已知//,则.解:过点作直线//.∴(

).(

)∵//,//,∴(

)//(

).(如果两条直线和第三条直线平行,那么这两直线平行)∴(

).(

).∴.∴.(2)如图②,如果//,则()【答案】(1)∠B,两直线平行,内错角相等,EF,CD,∠D,两直线平行,内错角相等;(2)360°【分析】(1)过点E作直线EF∥AB,则∠FEB=∠B,继而由EF∥CD可得∠FED=∠D.所以∠B+∠D=∠BEF+∠FED,即∠B+∠D=∠BED;(2)过点E作直线EF∥AB,则∠FEB+∠B=180°,继而由EF∥CD可得∠FED+∠D=180°.所以∠B+∠D+∠BEF+∠FED=360°,即∠B+∠BED+∠D=360°.【详解】解:(1)解:过点E作直线EF∥AB.∴∠FEB=∠B.(两直线平行,内错角相等)∵AB∥CD,EF∥AB,∴EF∥CD(如果两条直线和第三条直线平行,那么这两直线平行).∴∠FED=∠D(两直线平行,内错角相等).∴∠B+∠D=∠BEF+∠FED.∴∠B+∠D=∠BED.故答案为:∠B,两直线平行,内错角相等,EF,CD,∠D,两直线平行,内错角相等;(2)解:过点E作直线EF∥AB,如图.∴∠FEB+∠B=180°.两直线平行,内错角相等).∵AB∥CD,EF∥AB,∴EF∥CD(如果两条直线和第三条直线平行,那么这两直线平行).∴∠FED+∠D=180°(两直线平行,内错角相等).∴∠B+∠D+∠BEF+∠FED=360°.∴∠B+∠BED+∠D=360°.故答案为:360°.【点睛】本题考查了平行线的判定与性质,平行公理及其推论,熟练掌握平行线判定、性质说理是关键.10.(2023春·七年级课时练习)如图1,AB//CD,E是AB,CD之间的一点.(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并证明你的结论;(2)如图2,若∠BAE,∠CDE的角平分线交于点F,直接写出∠AFD与∠AED之间的数量关系;(3)将图2中的射线DC沿DE翻折交AF于点G得图3,若∠AGD的余角等于2∠E的补角,求∠BAE的大小.【答案】(1);(2);(3)【分析】(1)作EF∥AB,如图1,则EF∥CD,利用平行线的性质得∠1=∠EAE,∠2=∠CDE,从而得到∠BAE+∠CDE=∠AED(2)如图2,由(1)的结论得∠AFD=∠BAE,∠CDF=∠CDE,则∠AFD=(∠BAE+∠CDE),加上(1)的结论得到∠AFD=∠AED;(3)由(1)的结论得∠AGD=∠BAF+∠CDG,利用折叠性质得∠CDG=4∠CDF,再利用等量代换得到∠AGD=2∠AED-∠BAE,加上90°-∠AGD=180°-2∠AED,从而计算出∠BAE的度数.【详解】(1)∠BAE+∠CDE=∠AED理由如下:作EF∥AB,如图1∵AB∥CD∴EF∥CD∴∠1=∠BAE,∠2=∠CDE∴∠BAE+∠CDE=∠AED(2)如图2,由(1)的结论得∠AFD=∠BAF+∠CDF∵∠BAE、∠CDE的两条平分线交于点F∴∠BAF=∠BAE,∠CDF=∠CDE∴∠AFE=(∠BAE+∠CDE)∵∠BAE+∠CDE=∠AED∴∠AFD=∠AED(3)由(1)的结论得∠AGD=∠BAF+∠CDG而射线DC沿DE翻折交AF于点G∴∠CDG=4∠CDF∴∠AGD=∠BAF+4∠CDF=∠BAE+2∠CDE=∠BAE+2(∠AED-∠BAE)=2∠AED-∠BAE∵90°-∠AGD=180°-2∠AED∴90°-2∠AED+∠BAE=180°-2∠AED∴∠BAE=60°【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.11.(2023春·七年级课时练习)已知AB//CD.(1)如图1,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D;(2)如图,连接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直线交于点F.①如图2,当点B在点A的左侧时,若∠ABC=50°,∠ADC=60°,求∠BFD的度数.②如图3,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BFD的度数.(用含有α,β的式子表示)【答案】(1)见解析;(2)55°;(3)【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数;②如图3,过点作,当点在点的右侧时,,,根据平行线的性质及角平分线的定义即可求出的度数.【详解】解:(1)如图1,过点作,则有,,,,;(2)①如图2,过点作,有.,...即,平分,平分,,,.答:的度数为;②如图3,过点作,有.,,...即,平分,平分,,,.答:的度数为.【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.12.(2023春·七年级课时练习)已知,AB∥CD.点M在AB上,点N在CD上.(1)如图1中,∠BME、∠E、∠END的数量关系为:;(不需要证明)如图2中,∠BMF、∠F、∠FND的数量关系为:;(不需要证明)(2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数;(3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.【答案】(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不变,30°【分析】(1)过E作EH∥AB,易得EH∥AB∥CD,根据平行线的性质可求解;过F作FH∥AB,易得FH∥AB∥CD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF-∠FND=180°,可求解∠BMF=60°,进而可求解;(3)根据平行线的性质及角平分线的定义可推知∠FEQ=∠BME,进而可求解.【详解】解:(1)过E作EH∥AB,如图1,∴∠BME=∠MEH,∵AB∥CD,∴HE∥CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN﹣∠END.如图2,过F作FH∥AB,∴∠BMF=∠MFK,∵AB∥CD,∴FH∥CD,∴∠FND=∠KFN,∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,即:∠BMF=∠MFN+∠FND.故答案为∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,∴2∠BME+2∠END+∠BMF﹣∠FND=180°,即2∠BMF+∠FND+∠BMF﹣∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小没发生变化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQ∥NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN﹣∠NEQ=(∠BME+∠END)﹣∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【点睛】本题主要考查平行线的性质及角平分线的定义,作平行线的辅助线是解题的关键.13.(2023春·七年级课时练习)如图1,点、分别在直线、上,,.(1)求证:;(提示:可延长交于点进行证明)(2)如图2,平分,平分,若,求与之间的数量关系;(3)在(2)的条件下,如图3,平分,点在射线上,,若,直接写出的度数.【答案】(1)见解析;(2),见解析;(3)或.【分析】(1)根据平行线的判定与性质求证即可;(2)根据三角形的内角和为180°和平角定义得到,结合平行线的性质得到,再根据角平分线的定义证得,结合已知即可得出结论;(3)分当在直线下方和当在直线上方两种情况,根据平行线性质、三角形外角性质、角平分线定义求解即可.【详解】解:(1)如图1,延长交于点,∵,∴,∴,∵,∴,∴;(2)延长交于点,交于点,∵,,∴,∵,∴,∴,∵平分,平分,∴,,∴,∵,,∴;(3)当在直线下方时,如图,设射线交于,∵,∴,∵平分,∴,∴,∵,,∴,∵,,∴,即,解得:.当在直线上方时,如图,同理可证得,则有,解得:.综上,故答案为或.【点睛】本题考查平行线的判定与性质、角平分线的定义、三角形的外角性质、三角形的内角和定理、平角定义、角度的运算,熟练掌握相关知识的联系与运用是解答的关键.14.(2023春·七年级课时练习)已知ABCD,∠ABE的角分线与∠CDE的角分线相交于点F.(1)如图1,若BM、DM分别是∠ABF和∠CDF的角平分线,且∠BED=100°,求∠M的度数;(2)如图2,若∠ABM=∠ABF,∠CDM=∠CDF,∠BED=α°,求∠M的度数;(3)若∠ABM=∠ABF,∠CDM=∠CDF,请直接写出∠M与∠BED之间的数量关系.【答案】(1)65°(2)(3)2n∠M+∠BED=360°【分析】(1)首先作EGAB,FHAB,利用平行线的性质可得∠ABE+∠CDE=260°,再利用角平分线的定义得到∠ABF+∠CDF=130°,从而得到∠BFD的度数,再根据角平分线的定义可求∠M的度数;(2)先由已知得到∠ABE=6∠ABM,∠CDE=6∠CDM,由(1)得∠ABE+∠CDE=360°-∠BED,∠M=∠ABM+∠CDM,等量代换即可求解;(3)先由已知得到,,由(2)的方法可得到2n∠M+∠BED=360°.【详解】解:(1)如图1,作,,∵,∴,∴,,,,∴,∵,∴,∵的角平分线和的角平分线相交于F,∴,∴,∵、分别是和的角平分线,∴,,∴,∴;(2)如图2,∵,,∴,,∵与两个角的角平分线相交于点,∴,,∴,∵,∴,∴;(3)∵∠ABM=∠ABF,∠CDM=∠CDF,∴,,∵与两个角的角平分线相交于点,∴,,∴,∵,∴.【点睛】本题主要考查了平行线的性质和角平分线的计算,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质.15.(2023春·七年级课时练习)已知直线AM、CN和点B在同一平面内,且AM∥CN,AB⊥BC.(1)如图1,求∠A和∠C之间的数量关系;(2)如图2,若BD⊥AM,垂足为D,求证:∠ABD=∠C;(3)如图3,已知点D、E、F都在直线AM上,且∠ABD=∠NCB,BF平分∠DBC,BE平分∠ABD.若∠FCB+∠NCF=180°,∠BFC=3∠DBE,请直接写出∠EBC的度数.【答案】(1)∠A+∠C=90°;(2)见解析;(3)∠EBC=105°.【分析】(1)通过平行线性质和直角三角形内角关系求解.(2)画辅助平行线找角的联系.(3)利用(2)的结论,结合角平分线性质求解.【详解】解:(1)如图1,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠ABC=90°,∴∠A+∠AOB=90°,∠A+∠C=90°,故答案为:∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵AM∥CN,∴CN∥BG,∴∠CBG=∠BCN,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,∵∠ABD=∠NCB,∴∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∵BG∥DM,∴∠DFB=∠GBF=β,∴∠AFC=∠BFC+∠DFB=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】本题考查平行线性质,三角形内角和定理,角平分线的定义,画辅助线,找到角的关系是求解本题的关键.16.(2021春·辽宁大连·七年级统考期中)如图,,点在直线上,点在直线和之间,,平分.(1)求的度数(用含的式子表示);(2)过点作交的延长线于点,作的平分线交于点,请在备用图中补全图形,猜想与的位置关系,并证明;(3)将(2)中的“作的平分线交于点”改为“作射线将分为两个部分,交于点”,其余条件不变,连接,若恰好平分,请直接写出__________(用含的式子表示).【答案】(1);(2)画图见解析,,证明见解析;(3)或【分析】(1)根据平行线的传递性推出,再利用平行线的性质进行求解;(2)猜测,根据平分,推导出,再根据、平分,通过等量代换求解;(3)分两种情况进行讨论,即当与,充分利用平行线的性质、角平分线的性质、等量代换的思想进行求解.【详解】(1)过点作,,,,.(2)根据题意,补全图形如下:猜测,由(1)可知:,平分,,,,,又平分,,,.(3)①如图1,,由(2)可知:,,,,,,,,,,又平分,,;②如图2,,(同①);若,则有,又,,,,综上所述:或,故答案是:或.【点睛】本题考查了平行线的性质、角平分线、三角形内角和定理、垂直等相关知识点,解题的关键是掌握相关知识点,作出适当的辅助线,通过分类讨论及等量代换进行求解.题型二:笔尖型一、单选题1.(2023春·七年级课时练习)①如图1,,则;②如图2,,则;③如图3,,则;④如图4,直线EF,点在直线上,则.以上结论正确的个数是(

)A.1个 B.2个 C.3个 D.4个【答案】B【分析】①过点E作直线EFAB,由平行线的性质:两直线平行,同旁内角互补,即可得出结论;②如图2,先根据三角形外角的性质得出∠1=∠C+∠P,再根据两直线平行,内错角相等即可作出判断;③如图3,过点E作直线EF∥AB,由平行线的性质可得出∠A+∠AEC﹣∠1=180°,即得∠AEC=180°+∠1﹣∠A;④如图4,根据平行线的性质得出∠α=∠BOF,∠γ+∠COF=180°,再利用角的关系解答即可.【详解】解:①如图1,过点E作直线EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠A+∠1=180°,∠2+∠C=180°,∴∠A+∠B+∠AEC=360°,故①错误;②如图2,∵∠1是△CEP的外角,∴∠1=∠C+∠P,∵AB∥CD,∴∠A=∠1,即∠P=∠A﹣∠C,故②正确;③如图3,过点E作直线EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠A+∠3=180°,∠1=∠2,∴∠A+∠AEC﹣∠1=180°,即∠AEC=180°+∠1﹣∠A,故③错误;④如图4,∵AB∥EF,∴∠α=∠BOF,∵CD∥EF,∴∠γ+∠COF=180°,∵∠BOF=∠COF+∠β,∴∠COF=∠α﹣∠β,∴∠γ+∠α﹣∠β=180°,故④正确;综上结论正确的个数为2,故选:B.【点睛】本题考查的是平行线的性质及三角形外角的性质,熟练掌握平行线的性质,根据题意作出辅助线是解答此题的关键.二、填空题2.(2023春·七年级课时练习)如图,若直线l1∥l2,∠α=∠β,∠1=30°则∠2的度数为___.【答案】150°##150度【分析】延长AB交l2于E,根据平行线的判定可得AB∥CD,根据平行线的性质先求得∠3的度数,再根据平行线的性质求得∠2的度数.【详解】解:延长AB交l2于E,∵∠α=∠β,∴AB∥CD,∴∠2+∠3=180°∵l1∥l2,∴∠3=∠1=30°,∴∠2=180°-∠3=150°.故答案为:150°.【点睛】本题考查了平行线的性质和判定,熟练掌握平行线的性质和判定定理是解题的关键.3.(2023春·七年级课时练习)如图,直线a与∠AOB的一边射线OA相交,∠1=130°,向下平移直线a得到直线b,与∠AOB的另一边射线OB相交,则∠2+∠3=___.【答案】【分析】过点O作,利用平移的性质得到,可得判断,根据平行线的性质得,,可得到,从而得出的度数.【详解】解:过点O作,∵直线a向下平移得到直线b,∴,∴,∴,,∴,∴.故答案为:.【点睛】本题考查了平移的性质,平行线的性质,过拐点作已知直线的平行线是解题的关键.三、解答题4.(2021春·山东德州·七年级统考期中)(1)如图1,,,,则;(2)如图2,,点在射线上运动,当点在、两点之间运动时,,,求与、之间的数量关系,并说明理由;(3)在(2)的条件下,如果点在、两点外侧运动时(点与点、、三点不重合),请你直接写出与、之间的数量关系.【答案】(1);(2),理由详见解析;(3)当点在射线上时,;当点在上时,.【分析】(1)做出辅助线,根据平行线的性质求解即可;(2)过点作交于点,然后根据平行线的性质求解即可;(3)根据题意做出辅助线,然后根据平行线的性质求解即可;【详解】(1)如图1,过作,,,又,,则(2)理由是:如图2,过点作交于点,,(3)当点在射线上时,设CD与AP交于点P,如图所示,∵,∴,又∵在△CHP中,,∴,即:.当点在上时,如图所示,作PE∥AB,∴∠APE=∠BAP=∠α,∵AB∥CD,∴PE∥CD,∴∠CPE=∠PCD=∠β,∴∠CPA=∠CPE-∠APE=∠β-∠α.答:∠CPA与∠α,∠β之间的数量关系为:∠CPA=∠β-∠α.即.【点睛】此题考查了平行线的性质,解题的关键是根据题意作出辅助线.5.(2023春·全国·七年级专题练习)(1)如图(1)AB∥CD,猜想∠BPD与∠B、∠D的关系,说出理由.(2)观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,并说明理由.(3)观察图(3)和(4),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,不需要说明理由.【答案】(1)∠B+∠BPD+∠D=360°,理由见解析;(2)∠BPD=∠B+∠D,理由见解析;(3)∠BPD=∠D-∠B或∠BPD=∠B-∠D,理由见解析【分析】(1)过点P作EF∥AB,根据两直线平行,同旁内角互补即可求解;(2)首先过点P作PE∥AB,由AB∥CD,可得PE∥AB∥CD,根据两直线平行,内错角相等,即可得∠1=∠B,∠2=∠D,则可求得∠BPD=∠B+∠D.(3)由AB∥CD,根据两直线平行,内错角相等与三角形外角的性质,即可求得∠BPD与∠B、∠D的关系.【详解】解:(1)如图(1)过点P作EF∥AB,∴∠B+∠BPE=180°,∵AB∥CD,EF∥AB,∴EF∥CD,∴∠EPD+∠D=180°,∴∠B+∠BPE+∠EPD+∠D=360°,∴∠B+∠BPD+∠D=360°.(2)∠BPD=∠B+∠D.理由:如图2,过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠1=∠B,∠2=∠D,∴∠BPD=∠1+∠2=∠B+∠D.(3)如图(3),∠BPD=∠D-∠B.理由:∵AB∥CD,∴∠1=∠D,∵∠1=∠B+∠BPD,∴∠D=∠B+∠BPD,即∠BPD=∠D-∠B;如图(4),∠BPD=∠B-∠D.理由:∵AB∥CD,∴∠1=∠B,∵∠1=∠D+∠BPD,∴∠B=∠D+∠BPD,即∠BPD=∠B-∠D.【点睛】此题考查了平行线的性质与三角形外角的性质.此题难度不大,解题的关键是注意掌握平行线的性质,注意辅助线的作法.6.(2021春·安徽合肥·七年级统考期末)问题情景:如图1,AB∥CD,∠PAB=140°,∠PCD=135°,求∠APC的度数.(1)丽丽同学看过图形后立即口答出:∠APC=85°,请补全她的推理依据.如图2,过点P作PE∥AB,因为AB∥CD,所以PE∥CD.()所以∠A+∠APE=180°,∠C+∠CPE=180°.()因为∠PAB=140°,∠PCD=135°,所以∠APE=40°,∠CPE=45°,∠APC=∠APE+∠CPE=85°.问题迁移:(2)如图3,AD∥BC,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β,求∠CPD与∠α、∠β之间有什么数量关系?请说明理由.(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请直接写出∠CPD与∠α、∠β之间的数量关系.【答案】(1)平行于同一条直线的两条直线平行(或平行公理推论),两直线平行,同旁内角互补;(2),理由见解析;(3)或【分析】(1)根据平行线的判定与性质填写即可;(2)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(3)画出图形(分两种情况①点P在BA的延长线上,②点P在AB的延长线上),根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【详解】解:(1)如图2,过点P作PE∥AB,因为AB∥CD,所以PE∥CD.(平行于同一条直线的两条直线平行)所以∠A+∠APE=180°,∠C+∠CPE=180°.(两直线平行同旁内角互补)因为∠PAB=140°,∠PCD=135°,所以∠APE=40°,∠CPE=45°,∠APC=∠APE+∠CPE=85°.故答案为:平行于同一条直线的两条直线平行;两直线平行,同旁内角互补;(2)∠CPD=∠α+∠β,理由如下:如图3所示,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;(3)当P在BA延长线时,如图4所示:过P作PE∥AD交CD于E,同(2)可知:∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠β-∠α;当P在AB延长线时,如图5所示:同(2)可知:∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠α-∠β.综上所述,∠CPD与∠α、∠β之间的数量关系为:∠CPD=∠β-∠α或∠CPD=∠α-∠β.【点睛】本题考查了平行线的性质和判定定理,正确作出辅助线是解答此题的关键.7.(2023春·全国·七年级专题练习)已知直线AB∥CD,P为平面内一点,连接PA、PD.(1)如图1,已知∠A=50°,∠D=150°,求∠APD的度数;(2)如图2,判断∠PAB、∠CDP、∠APD之间的数量关系为.(3)如图3,在(2)的条件下,AP⊥PD,DN平分∠PDC,若∠PAN+∠PAB=∠APD,求∠AND的度数.【答案】(1)∠APD=80°;(2)∠PAB+∠CDP-∠APD=180°;(3)∠AND=45°.【分析】(1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补以及内错角相等,即可求解;(2)作PQ∥AB,易得AB∥PQ∥CD,根据平行线的性质,即可证得∠PAB+∠CDP-∠APD=180°;(3)先证明∠NOD=∠PAB,∠ODN=∠PDC,利用(2)的结论即可求解.【详解】解:(1)∵∠A=50°,∠D=150°,过点P作PQ∥AB,∴∠A=∠APQ=50°,∵AB∥CD,∴PQ∥CD,∴∠D+∠DPQ=180°,则∠DPQ=180°-150°=30°,∴∠APD=∠APQ+∠DPQ=50°+30°=80°;(2)∠PAB+∠CDP-∠APD=180°,如图,作PQ∥AB,∴∠PAB=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠CDP+∠DPQ=180°,即∠DPQ=180°-∠CDP,∵∠APD=∠APQ-∠DPQ,∴∠APD=∠PAB-(180°-∠CDP)=∠PAB+∠CDP-180°;∴∠PAB+∠CDP-∠APD=180°;(3)设PD交AN于O,如图,∵AP⊥PD,∴∠APO=90°,由题知∠PAN+∠PAB=∠APD,即∠PAN+∠PAB=90°,又∵∠POA+∠PAN=180°-∠APO=90°,∴∠POA=∠PAB,∵∠POA=∠NOD,∴∠NOD=∠PAB,∵DN平分∠PDC,∴∠ODN=∠PDC,∴∠AND=180°-∠NOD-∠ODN=180°-(∠PAB+∠PDC),由(2)得∠PAB+∠CDP-∠APD=180°,∴∠PAB+∠PDC=180°+∠APD,∴∠AND=180°-(∠PAB+∠PDC)=180°-(180°+∠APD)=180°-(180°+90°)=45°,即∠AND=45°.【点睛】本题考查了平行线的性质以及角平分线的定义.注意掌握辅助线的作法,注意掌握数形结合思想的应用.8.(2022春·贵州黔南·七年级统考阶段练习)综合与探究:(1)问题情境:如图1,.求的度数.小明想到一种方法,但是没有解答完:如图2,过P作,∴.∴.∵.∴.…………请你帮助小明完成剩余的解答.(2)问题探究:请你依据小明的思路,解答下面的问题:如图3,,点P在射线上运动,.当点P在A,B两点之间时,之间有何数量关系?请说明理由.【答案】(1)110°;(2),理由见解析【分析】(1)过P作PE//AB,构造同旁内角,通过平行线性质,可得∠APC=50°+60°=110°.(2)过P作PE//AD交CD于E,推出AD//PE//BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【详解】解:(1)过P作,∴,∴.∵,∴.∴,∴,∴.(2),如图3,过P作PE//AD交CD于E,∵AD//BC,∴AD//PE//BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;【点睛】本题考查了平行线的性质和判定的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.9.(2023春·全国·七年级专题练习)(1)问题发现如图①,直线,是与之间的一点,连接,,可以发现:,请你写出证明过程;(2)拓展探究如果点运动到图②所示的位置,其他条件不变,求证:.(3)解决问题如图③,,,,则________.(直接写出结论,不用写计算过程)【答案】(1)见解析;(2)见解析;(3)【分析】(1)根据平行判定得到,利用平行线的性质得,,得到,即可求证出答案;(2)类比(1),过点E作EF∥AB,然后根据平行线的判定和性质即可求证出答案;(3)类比,过点作,根据平行判定得到,再根据平行的性质得:,,根据角与角的关系求得:,则可求出答案.【详解】(1)证明:如图①,过点作,∵(已知),(辅助线的作法).∴(平行于同一直线的两直线平行),∴(两直线平行,内错角相等).∵,∴,∴(等量代换)即.(2)证明:如图②,过点作,∵(已知),(辅助线的作法).∴(平行于同一直线的两直线平行).∴,,∴,∴.(3)解:如图③,过点作,∵(已知),(辅助线的作法),∴(平行于同一直线的两直线平行),∴,,∵,,∴,∴,∴.故答案为:.【点睛】本题考查平行线的判定和性质,解题的关键是作出辅助线,灵活运用平行判断以及平行线的性质找到角与角之间的关系.10.(2023春·七年级课时练习)阅读下面材料,完成(1)~(3)题.数学课上,老师出示了这样—道题:如图1,已知点分别在上,.求的度数.同学们经过思考后,小明、小伟、小华三位同学用不同的方法添加辅助线,交流了自己的想法:小明:“如图2,通过作平行线,发现,由已知可以求出的度数.”小伟:“如图3这样作平行线,经过推理,得也能求出的度数.”小华:∵如图4,也能求出的度数.”(1)请你根据小明同学所画的图形(图2),描述小明同学辅助线的做法,辅助线:______;(2)请你根据以上同学所画的图形,直接写出的度数为_________°;老师:“这三位同学解法的共同点,都是过一点作平行线来解决问题,这个方法可以推广.”请大家参考这三位同学的方法,使用与他们类似的方法,解决下面的问题:(3)如图,,点分别在上,平分若请探究与的数量关系((用含的式子表示),并验证你的结论.【答案】(1)过点作;(2)30;(3).【分析】(1)根据图中所画虚线的位置解答即可;(2)过点作,根据平行线的性质可得∠1=∠3,∠2=∠4,由EP⊥FP可得∠3+∠4=90°,即可得出∠1+∠2=90°,进而可得答案;(3)设,过点作,根据平行线的性质可得,,进而根据角的和差关系即可得答案.【详解】(1)由图中虚线可知PQ//AC,∴小明同学辅助线的做法为过点作,故答案为:过点作(2)如图2,过点作,∵AB//CD,∴PQ//AB//CD,∴∠1=∠3,∠2=∠4,∵EP⊥FP,∴∠EPF=∠3+∠4=90°,∴∠1+∠2=90°,∵∠1=60°,∴∠2=30°,故答案为:30(3)如图,设,过点作,∵,即.【点睛】本题考查平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;正确作出辅助线,熟练掌握平行线的性质是解题关键.11.(2023春·七年级课时练习)问题情境:如图1,,,,求的度数.思路点拨:小明的思路是:如图2,过P作,通过平行线性质,可分别求出、的度数,从而可求出的度数;小丽的思路是:如图3,连接,通过平行线性质以及三角形内角和的知识可求出的度数;小芳的思路是:如图4,延长交的延长线于E,通过平行线性质以及三角形外角的相关知识可求出的度数.问题解决:请从小明、小丽、小芳的思路中任选一种思路进行推理计算,你求得的的度数为°;问题迁移:(1)如图5,,点P在射线上运动,当点P在A、B两点之间运动时,,.、、之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出、、间的数量关系.【答案】110;(1),理由见解析;(2)或,理由见解析【分析】小明的思路是:过P作,构造同旁内角,利用平行线性质,可得.(1)过P作交于E,推出,根据平行线的性质得出,,即可得出答案;(2)画出图形(分两种情况:①点P在的延长线上,②点P在的延长线上),根据平行线的性质得出,,即可得出答案.【详解】解:小明的思路:如图2,过P作,∵,∴,∴,,∴,故答案为:110;(1),理由如下:如图5,过P作交于E,∵,∴,∴,,∴;(2)当P在延长线时,;理由:如图6,过P作交于E,∵,∴,∴,,∴;当P在之间时,.理由:如图7,过P作交于E,∵,∴,∴,,∴.【点睛】本题考查了三角形的内角和定理,平行线的判定和性质,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.12.(2023春·七年级课时练习)已知直线,点A,C分别在,上,点B在直线,之间,且.(1)如图①,求证:.阅读并将下列推理过程补齐完整:过点B作,因为,所以__________(

)所以,(

)所以.(2)如图②,点D,E在直线上,且,BE平分.求证:;(3)在(2)的条件下,如果的平分线BF与直线平行,试确定与之间的数量关系,并说明理由.【答案】(1)BG;平行于同一条直线的两条直线平行;两直线平行,内错角相等;(2)见解析;(3),理由见解析【分析】(1)根据平行于同一条直线的两条直线平行可得,再根据平行线的性质即可得结论;(2)过点作,根据,可得,所以,,结合(1)即可进行证明;(3)根据,,可得,根据平分,可得,结合(2)可得,中根据平行线的性质即可得结论.【详解】(1)解:如图①,过点作,因为,所以(平行于同一条直线的两条直线平行).所以,(两直线平行,内错角相等).所以.故答案为:,平行于同一条直线的两条直线平形,两直线平行,内错角相等;(2)证明:如图②,过点作,因为,所以,所以,,由(1)知:.又,所以.因为.所以,所以,因为平分.所以,所以,所以;(3)解:,理由如下:因为,,所以,因为平分,所以,由(2)知:,所以,因为,所以,所以,,而,所以.【点睛】本题考查了平行线的判定与性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.13.(2023春·七年级课时练习)已知,定点,分别在直线,上,在平行线,之间有一动点.(1)如图1所示时,试问,,满足怎样的数量关系?并说明理由.(2)除了(1)的结论外,试问,,还可能满足怎样的数量关系?请画图并证明(3)当满足,且,分别平分和,①若,则__________°.②猜想与的数量关系.(直接写出结论)【答案】(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF【分析】(1)由于点是平行线,之间有一动点,因此需要对点的位置进行分类讨论:如图1,当点在的左侧时,,,满足数量关系为:;(2)当点在的右侧时,,,满足数量关系为:;(3)①若当点在的左侧时,;当点在的右侧时,可求得;②结合①可得,由,得出;可得,由,得出.【详解】解:(1)如图1,过点作,,,,,,;(2)如图2,当点在的右侧时,,,满足数量关系为:;过点作,,,,,,;(3)①如图3,若当点在的左侧时,,,,分别平分和,,,;如图4,当点在的右侧时,,,;故答案为:或30;②由①可知:,;,.综合以上可得与的数量关系为:或.【点睛】本题主要考查了平行线的性质,平行公理和及推论等知识点,作辅助线后能求出各个角的度数,是解此题的关键.题型三:“鸡翅”型一、解答题1.(2021春·浙江台州·七年级统考期末)如图,已知于点A,AE∥CD交于点E,且于点F.求证:.证明:∵于点A,于点F,(已知)∴.(垂直的定义)∴AD∥EF,(

)∴__________(

)∵AE∥CD,(已知)∴________.(两直线平行,同位角相等)∵,∴.(等量代换)【答案】见解析【分析】首先根据同位角相等,两直线平行,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论