版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市上海师范大学附属第二外国语学校2025届数学高二上期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.双曲线的渐近线方程和离心率分别是A. B.C. D.2.总体有编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取3个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第3个个体的编号为()7816657208026314070243699728019832049234493582003623486969387481A.08 B.02C.63 D.143.焦点坐标为,(0,4),且长半轴的椭圆方程为()A. B.C. D.4.过点且斜率为的直线方程为()A. B.C D.5.函数极小值为()A. B.C. D.6.等比数列满足,,则()A.11 B.C.9 D.7.设为抛物线焦点,直线,点为上任意一点,过点作于,则()A.3 B.4C.2 D.不能确定8.如图,在空间四边形中,()A. B.C. D.9.已知双曲线的左焦点为F,O为坐标原点,M,N两点分别在C的左、右两支上,若四边形OFMN为菱形,则C的离心率为()A. B.C. D.10.设椭圆C:的左、右焦点分别为、,P是C上的点,⊥,∠=,则C的离心率为A. B.C. D.11.在正方体中,E,F分别为AB,CD的中点,则与平面所成的角的正弦值为()A. B.C. D.12.若数列满足,,则该数列的前2021项的乘积是()A. B.C.2 D.1二、填空题:本题共4小题,每小题5分,共20分。13.命题,恒成立是假命题,则实数a取值范围是________________14.在报名的3名男教师和3名女教师中,选取3人参加义务献血,要求男、女教师都有,则不同的选取方法数为__________.(结果用数值表示)15.已知点,为抛物线:上不同于原点的两点,且,则的面积的最小值为__________.16.设函数,.若对任何,,恒成立,求的取值范围______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知:方程表示焦点在轴上的椭圆,:方程表示焦点在轴上的双曲线,其中.(1)若“”为真命题,求的取值范围:(2)若“”为假命题,“”为真命题,求的取值范围.18.(12分)已知椭圆的离心率为,且其左顶点到右焦点的距离为.(1)求椭圆的方程;(2)设点、在椭圆上,以线段为直径的圆过原点,试问是否存在定点,使得到直线的距离为定值?若存在,请求出点坐标;若不存在,请说理由.19.(12分)已知圆,是圆上一点,过A作直线l交圆C于另一点B,交x轴正半轴于点D,且A为的中点.(1)求圆C在点A处的切线方程;(2)求直线l的方程.20.(12分)已知函数(1)讨论函数的单调性;(2)若对任意的,都有成立,求的取值范围21.(12分)已知直三棱柱中,,,E、F分别是、的中点,D为棱上的点.(1)证明:;(2)当时,求直线BF与平面DEF所成角的正弦值.22.(10分)某微小企业员工的年龄分布茎叶图如图所示:(1)求该公司员工年龄的极差和第25百分位数;(2)从该公司员工中随机抽取一位,记所抽取员工年龄在区间内为事件,所抽取员工年龄在区间内为事件,判断事件与是否互相独立,并说明理由;
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】先根据双曲线的标准方程,求得其特征参数的值,再利用双曲线渐近线方程公式和离心率定义分别计算即可.【详解】双曲线的,双曲线的渐近线方程为,离心率为,故选A.【点睛】本题主要考查双曲线的渐近线及离心率,属于简单题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解2、D【解析】由随机数表法抽样原理即可求出答案.【详解】根据题意,依次读出的数据为65(舍去),72(舍去),08,02,63(舍去),14,即第三个个体编号为14.故选:D.3、B【解析】根据题意可知,即可由求出,再根据焦点位置得出椭圆方程【详解】因为,所以,而焦点在轴上,所以椭圆方程为故选:B4、B【解析】利用点斜式可得出所求直线的方程.【详解】由题意可知所求直线的方程为,即.故选:B.5、A【解析】利用导数分析函数的单调性,可求得该函数的极小值.【详解】对函数求导得,令,可得或,列表如下:减极小值增极大值减所以,函数的极小值为.故选:A.6、B【解析】由已知结合等比数列的性质即可求解.【详解】由数列是等比数列,得:,故选:B7、A【解析】由抛物线方程求出准线方程,由题意可得,由抛物线的定义可得,即可求解.【详解】由可得,准线为,设,由抛物线的定义可得,因为过点作于,可得,所以,故选:A.8、A【解析】利用空间向量加减法法则直接运算即可.【详解】根据向量的加法、减法法则得.故选:A.9、C【解析】由题意可得且,从而求出点的坐标,将其代入双曲线方程中,即可得出离心率.【详解】由题意,四边形为菱形,如图,则且,分别为的左,右支上的点,设点在第二象限,在第一象限.由双曲线的对称性,可得,过点作轴交轴于点,则,所以,则,所以,所以,则,即,解得,或,由双曲线的离心率,所以取,则故选:C10、D【解析】详解】由题意可设|PF2|=m,结合条件可知|PF1|=2m,|F1F2|=m,故离心率e=选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.11、B【解析】作出线面角构造三角形直接求解,建立空间直角坐标系用向量法求解.【详解】设正方体棱长为2,、F分别为AB、CD的中点,由正方体性质知平面,所以平面平面,在平面作,则平面,因为,所以即为所求角,所以.故选:B12、C【解析】先由数列满足,,计算出前5项,可得,且,再利用周期性即可得到答案.【详解】因为数列满足,,所以,同理可得,…所以数列每四项重复出现,即,且,而,所以该数列的前2021项的乘积是.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由命题为假命题可得命题为真命题,由此可求a范围.【详解】∵命题,恒成立是假命题,∴,,∴,,又函数在为减函数,∴,∴,∴实数a的取值范围是,故答案为:.14、18【解析】由题设,选取方式有两男教师一女教师或两女教师一男教师,应用组合数求出选取方法数.【详解】选取方式有:选两男教师一女教师或选两女教师一男教师,∴不同的选取方法有:种.故答案为:18.15、【解析】设,,利用可得即可求得,利用两点间距离公式求出、,面积,利用基本不等式即可求最值.【详解】设,,由可得,解得:,,,,,所以,当且仅当时等号成立,所以的面积的最小值为,故答案为:.【点睛】关键点点睛:本题解题的关键点是设,坐标,采用设而不求的方法,将转化为,求出参数之间的关系,再利用基本不等式求的最值.16、【解析】先把原不等式转化为恒成立,构造函数,利用恒成立,求出的取值范围.【详解】因为对任何,,所以对任何,,所以在上为减函数.,,所以恒成立,即对恒成立,所以,所以.即的取值范围是.故答案为:.【点睛】恒(能)成立问题求参数的取值范围:①参变分离,转化为不含参数的最值问题;②不能参变分离,直接对参数讨论,研究的单调性及最值;③特别地,个别情况下恒成立,可转换为(二者在同一处取得最值).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或(2)【解析】(1)先假设命题为真命题,求出的取值范围,为真命题,取补集即可(2)假设命题为真命题,求出的取值范围,根据题意,则命题假设和命题一真一假,分类讨论求的取值范围【小问1详解】解:若为真命题,则,解得,若“”为真命题,则为假命题,或;【小问2详解】若为真命题,则解得,若“”为假命题,则“”为真命题,则与一真一假,①若真假,则解得,②若真假,则解得,综上所述,,即的取值范围为.18、(1);(2)存在,.【解析】(1)由题设可知求出,再结合,从而可求出椭圆的方程,(2)①若直线与轴垂直,由对称性可知,代入椭圆方程可求得结果,②若直线不与轴垂直,设直线的方程为,将直线方程与椭圆方程联立方程组,消去,然后利用根与系数的关系,设,,再由条件,得,从而得,再利用点到直线的距离公式可求得结果【详解】(1)由题设可知解得,,,所以椭圆的方程为:;(2)设,,①若直线与轴垂直,由对称性可知,将点代入椭圆方程,解得,原点到该直线的距离;②若直线不与轴垂直,设直线的方程为,由消去得,则由条件,即,由韦达定理得,整理得,则原点到该直线的距离;故存在定点,使得到直线的距离为定值.19、(1)(2)或【解析】(1)以直线方程的点斜式去求圆C在点A处的切线方程;(2)以A为的中点为突破口,设点法去求直线l的方程简单快捷.【小问1详解】圆可化为,圆心因为直线的斜率为,所以圆C在A点处切线斜率为2,所以切线方程为即.【小问2详解】由题意设因为是中点,所以将B代入圆C方程得解得或当时,,此时l方程为当时,,此时l方程为所以l方程为或20、(1)答案见解析;(2).【解析】(1)求,分别讨论不同范围下的正负,分别求单调性;(2)由(1)所求的单调性,结合,分别求出的范围再求并集即可.【详解】解:(1)由已知定义域为,当,即时,恒成立,则在上单调递增;当,即时,(舍)或,所以在上单调递减,在上单调递增.所以时,在上单调递增;时,在上单调递减,在上单调递增.(2)由(1)可知,当时,在上单调递增,若对任意的恒成立,只需,而恒成立,所以成立;当时,若,即,则在上单调递增,又,所以成立;若,则在上单调递减,在上单调递增,又,所以,,不满足对任意的恒成立.所以综上所述:.21、(1)证明见解析(2)【解析】(1)由题意建立如图所示的空间直角坐标系,利用空间向量证明即可,(2)求出平面DEF的法向量,利用空间向量求解【小问1详解】证明:因为三棱柱是直三棱柱,且,所以两两垂直,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 共同出资投资摄影馆合伙协议
- 财产信托合同样板
- 买卖股份协议书范本
- 工程建设合同中的风险控制策略
- 2025年员工劳动合同样本
- 2025年青安岗工作计划例文(2篇)
- 门窗安装合同
- 2025年商场消防安全工作计划(2篇)
- 办公室用品管理制度范文(2篇)
- 2024水电施工合同协议书
- 管辖权异议仲裁申请书
- (完整版)中考英语作文必备好词好句
- T-CERDS 3-2022 企业ESG评价体系
- 落实国家组织药品集中采购使用检测和应急预案
- 报价经理岗位职责
- 汝州某燃煤热电厂施工组织设计
- 猪场配怀工作安排方案设计
- 《广东省普通高中学生档案》模板
- GB/T 2-2016紧固件外螺纹零件末端
- GB/T 12467.5-2009金属材料熔焊质量要求第5部分:满足质量要求应依据的标准文件
- GB 17740-1999地震震级的规定
评论
0/150
提交评论