




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届贵州省贵阳市高一上数学期末质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.三个数大小的顺序是A. B.C. D.2.下列说法正确的是()A.若,,则 B.若a,,则C.若,,则 D.若,则3.长方体中,,,E为中点,则异面直线与CE所成角为()A. B.C. D.4.函数的定义域是()A. B.C. D.5.已知函数若则的值为().A. B.或4C. D.或46.已知为所在平面内一点,,则()A. B.C. D.7.函数的图象可能是A. B.C. D.8.若m,n表示两条不同直线,α表示平面,则下列命题中真命题是()A.若,,则 B.若,,则C.若,,则 D.若,,则9.已知集合,则=A. B.C. D.10.设集合M={a|x∈R,x2+ax+1>0},集合N={a|x∈R,(a-3)x+1=0},若命题p:a∈M,命题q:a∈N,那么命题p是命题q的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.在中,,BC边上的高等于,则______________12.经过点,且在轴上的截距等于在轴上的截距的2倍的直线的方程是__________13.函数的递减区间是__________.14.函数是定义在上的奇函数,当时,,则______15.已知定义在区间上的奇函数满足:,且当时,,则____________.16.直线与函数的图象相交,若自左至右的三个相邻交点依次为、、,且满足,则实数________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)设函数.若不等式对一切实数恒成立,求实数的取值范围;(2)解关于的不等式.18.已知函数(Ⅰ)求在区间上的单调递增区间;(Ⅱ)若,,求的值19.若函数在定义域内存在实数使成立,则称函数有“漂移点”.(1)函数是否有漂移点?请说明理由;(2)证明函数在上有漂移点;(3)若函数在上有漂移点,求实数的取值范围.20.已知正项数列的前项和为,且和满足:(1)求的通项公式;(2)设,求的前项和;(3)在(2)的条件下,对任意,都成立,求整数的最大值21.已知函数的部分图象如下图所示.(1)求函数的解析式,并写出函数的单调递增区间;(2)将函数图象上所有点的横坐标缩短到原来的(纵坐标不变),再将所得的函数图象上所有点向左平移个单位长度,得到函数的图象.若函数的图象关于直线对称,求函数在区间上的值域.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据指数函数和对数函数的单调性知:,即;,即;,即;所以,故正确答案为选项B考点:指数函数和对数函数的单调性;间接比较法2、C【解析】结合特殊值、差比较法确定正确选项.【详解】A:令,;,,则,,不满足,故A错误;B:a,b异号时,不等式不成立,故B错误;C:,,,,即,故C正确;D:令,,不成立,故D错误.故选:C3、C【解析】以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出异面直线与所成角【详解】解:长方体中,,,为中点,以为原点,为轴,为轴,为轴,建立空间直角坐标系,,,,,,,,设异面直线与所成角为,则,,异面直线与所成角为故选:【点睛】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题4、D【解析】由函数解析式有意义可得出关于实数的不等式组,由此可求得原函数的定义域.【详解】函数有意义,只需且,解得且因此,函数的定义域为.故选:D.5、B【解析】利用分段讨论进行求解.【详解】当时,,(舍);当时,,或(舍);当时,,;综上可得或.故选:B.【点睛】本题主要考查分段函数的求值问题,侧重考查分类讨论的意识.6、A【解析】根据平面向量的线性运算及平面向量基本定理即可得出答案.【详解】解:因为为所在平面内一点,,所以.故选:A7、C【解析】函数即为对数函数,图象类似的图象,位于轴的右侧,恒过,故选:8、A【解析】对于A,因为垂直于同一平面的两条直线相互平行,故A正确;对于B,如果一条直线平行于一个平面,那么平行于已知直线的直线与该平面的位置关系有平行或在平面内,故B错;对于C,因同平行于一个平面的两条直线异面、相交或平行,故C错;对于D,与一个平面的平行直线垂直的直线与已知平面是平行、相交或在面内,故D错,选A.9、B【解析】由题意,所以.故选B考点:集合的运算10、A【解析】由题意,对于集合M,△=a2-4<0,解得-2<a<2;对于集合N,a≠3若-2<a<2,则a≠3;反之,不成立.命题p是命题q的充分不必要条件.故选A二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】设边上的高为,则,求出,.再利用余弦定理求出.【详解】设边上的高为,则,所以,由余弦定理,知故答案为【点睛】本题主要考查余弦定理,意在考查学生对该知识的理解掌握水平,属于基础题.12、或【解析】设所求直线方程为,将点代入上式可得或.考点:直线方程13、【解析】先求出函数的定义域,再根据复合函数单调性“同增异减”原则求出函数的单调递减区间即可得出答案【详解】解:意可知,解得,所以的定义域是,令,对称轴是,在上是增函数,在是减函数,又在定义域上是增函数,是和的复合函数,的单调递减区间是,故答案为:【点睛】本题主要考查对数型复合函数的单调区间,属于基础题14、11【解析】根据奇函数性质求出函数的解析式,然后逐层代入即可.【详解】,,当时,,即,,,故答案为:11.15、【解析】由函数已知的奇偶性可得、,再由对称性进而可得周期性得解.【详解】因为在区间上是奇函数,所以,,,得,因为,,所以的周期为..故答案为:.16、或【解析】设点、、的横坐标依次为、、,由题意可知,根据题意可得出关于、的方程组,分、两种情况讨论,求出的值,即可求得的值.【详解】设点、、的横坐标依次为、、,则,当时,因为,所以,,即,因为,得,因为,则,即,可得,所以,,可得,所以,;当时,因为,所以,,即,因为,得,因为,则,即,可得,所以,,可得,所以,.综上所述,或.故答案为:或.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)答案见解析.【解析】(1)由题设知对一切实数恒成立,根据二次函数的性质列不等式组求参数范围.(2)分类讨论法求一元二次不等式的解集.【详解】(1)由题设,对一切实数恒成立,当时,在上不能恒成立;∴,解得.(2)由,∴当时,解集为;当时,无解;当时,解集为;18、(Ⅰ),;(Ⅱ).【解析】(Ⅰ)利用三角恒等变换思想化简函数的解析式为,求得函数在上的单调递增区间,与取交集可得出结果;(Ⅱ)由可得出,利用同角三角函数的基本关系可求得的值,利用两角和的正弦公式可求得的值详解】(Ⅰ)令,,得,令,得;令,得.因此,函数在区间上的单调递增区间为,;(Ⅱ)由,得,,又,,因此,【点睛】本题考查正弦型函数的单调区间的求解,同时也考查了利用两角和的正弦公式求值,考查计算能力,属于中等题.19、(1)没有,理由见解析;(2)证明见解析;(3).【解析】(1)根据给定定义列方程求解判断作答.(2)根据给定定义构造函数,由零点存在性定理判断函数的零点情况即可作答.(3)根据给定定义列方程,变形构造函数,利用函数有零点分类讨论计算作答.【小问1详解】假设函数有“漂移点”,则,此方程无实根,所以函数没有漂移点.【小问2详解】令,,则,有,即有,而函数在单调递增,因此,在上有一个实根,所以函数在上有漂移点.小问3详解】依题意,设在上的漂移点为,则,即,亦即,整理得:,由已知可得,令,,则在上有零点,当时,的图象的对称轴为,而,则,即,整理得,解得,则,当时,,0,则不成立,当时,,在上单调递增,又,则恒大于0,因此,在上没有零点.综上得,.【点睛】思路点睛:涉及一元二次方程的实根分布问题,可借助二次函数的图象及其性质,利用数形结合的方法解决问题.20、(1);(2);(3)7.【解析】(1)由4Sn=(an+1)2,知4Sn-1=(an-1+1)2(n≥2),由此得到(an+an-1)•(an-an-1-2)=0.从而能求出{an}的通项公式;(2)由(1)知,由此利用裂项求和法能求出Tn(3)由(2)知从而得到.由此能求出任意n∈N*,Tn都成立的整数m的最大值【详解】(1)∵4Sn=(an+1)2,①∴4Sn-1=(an-1+1)2(n≥2),②①-②得4(Sn-Sn-1)=(an+1)2-(an-1+1)2∴4an=(an+1)2-(an-1+1)2化简得(an+an-1)•(an-an-1-2)=0∵an>0,∴an-an-1=2(n≥2)∴{an}是以1为首项,2为公差等差数列∴an=1+(n-1)•2=2n-1(2)∴(3)由(2)知,∴数列{Tn}是递增数列∴∴∴整数m的最大值是7【点睛】本题考查数列的通项公式的求法,考查裂项相消法求数列的前n项和,解题时要认真审题,仔细解答,注意等价转化思想的合理运用21、(1),递增区间为;(2).【解析】(1)由三角函数的图象,求得函数的解析式,结合三角函数的性质,即可求解.(2)由三角函数的图象变换,求得,根据的图象关于直线对称,求得的值,得到,结合三角函数的性质,即可求解.【详解】(1)由图象可知,,所以,所以,由图可求出最低点的坐标为,所以,所以,所以,因为,所以,所以,由,可得.所以函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 体育设施建设的节能材料与技术措施
- 装配式PC构件施工的质量管理措施
- 消防安全知识培训课件版
- 财务统计员的述职报告范文
- 涂料基础知识
- 测量管理体系知识培训
- 传动设备采购合同样本
- 双钢板-混凝土风电组合塔筒轴压性能试验研究
- 隧道通风工程施工合同
- 胰十二指肠切除术术后并发症的危险因素分析
- 2025年2月时事政治100题及参考答案
- 2025年湖南铁道职业技术学院单招职业技能测试题库带答案
- 《中国建筑的特征》课件
- 乌海市储能项目评估报告
- 公路养护考勤管理制度
- 2024年全国职业院校技能大赛中职组(水利工程制图与应用赛项)考试题库(含答案)
- 2024年03月上海广发银行上海分行春季校园招考笔试历年参考题库附带答案详解
- 水电解质酸碱平衡失调病人护理
- 2024年武汉市第五医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- DB33T 1190-2020 石材面板保温装饰板外墙外保温系统应用技术规程
- 临床诊疗规范培训
评论
0/150
提交评论