江苏省淮安市高中校协作体2025届高一数学第一学期期末经典试题含解析_第1页
江苏省淮安市高中校协作体2025届高一数学第一学期期末经典试题含解析_第2页
江苏省淮安市高中校协作体2025届高一数学第一学期期末经典试题含解析_第3页
江苏省淮安市高中校协作体2025届高一数学第一学期期末经典试题含解析_第4页
江苏省淮安市高中校协作体2025届高一数学第一学期期末经典试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省淮安市高中校协作体2025届高一数学第一学期期末经典试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中,为偶函数的是()A. B.C. D.2.函数=的部分图像如图所示,则的单调递减区间为A. B.C. D.3.设,,,则下列大小关系表达正确的是()A. B.C. D.4.在空间四边形的各边上的依次取点,若所在直线相交于点,则A.点必在直线上 B.点必在直线上C.点必在平面外 D.点必在平面内5.如图,其所对应的函数可能是()A B.C. D.6.已知的定义域为,则函数的定义域为A. B.C. D.7.设且则A. B.C. D.8.函数的部分图像如图所示,则的值为()A. B.C. D.9.函数,则的大致图象是()A. B.C. D.10.设平面向量,则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.命题“,使关于的方程有实数解”的否定是_________.12.函数f(x)=+的定义域为____________13.已知a,b为直线,α,β,γ为平面,有下列四个命题:(1)a∥α,b∥β,则a∥b;(2)a⊥γ,b⊥γ,则a∥b;(3)a∥b,b⊂α,则a∥α;(4)a⊥b,a⊥α,则b∥α;其中正确命题是__14.____.15.在对某工厂甲乙两车间某零件尺寸的调查中,采用样本量比例分配的分层随机抽样,如果不知道样本数据,只知道抽取了甲车间10个零件,其尺寸的平均数和方差分别为12和4.5,抽取了乙车间30个零件,其平均数和方差分别为16和3.5,则该工厂这种零件的方差估计值为___________.(精确到0.1)16.已知扇形的圆心角为,面积为,则该扇形的弧长为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(其中),函数(其中).(1)若且函数存在零点,求的取值范围;(2)若是偶函数且函数的图象与函数的图象只有一个公共点,求实数的取值范围.18.6月17日是联合国确定的“世界防治荒漠化和干旱日”,旨在进一步提高世界各国人民对防治荒漠化重要性的认识,唤起人们防治荒漠化的责任心和紧迫感.为增强全社会对防治荒漠化的认识与关注,聚集联合国2030可持续发展目标——实现全球土地退化零增长.自2004年以来,我国荒漠化和沙化状况呈现整体遏制、持续缩减、功能增强、成效明显的良好态势.治理沙漠离不开优质的树苗,现从苗圃中随机地抽测了400株树苗的高度(单位:),得到如图所示的频率分布直方图.(1)求频率分布直方图中实数的值和抽到的树苗的高度在的株数;(2)估计苗圃中树苗的高度的平均数和中位数.(同一组中数据用该组区间的中点值作代表)19.求值:(1);(2)20.如图,在平面直角坐标系中,为单位圆上一点,射线OA绕点O按逆时针方向旋转后交单位圆于点B,点B的纵坐标y关于的函数为.(1)求函数的解析式,并求;(2)若,求的值.21.参加劳动是学生成长的必要途径,每个孩子都要抓住日常生活中的劳动实践机会,自觉参与、自己动手,坚持不懈进行劳动,掌握必要的劳动技能.在劳动中接受锻炼、磨炼意志,培养正确的劳动价值观和良好的劳动品质.大家知道,用清水洗衣服,其上残留的污渍用水越多,洗掉的污渍量也越多,但是还有污渍残留在衣服上,在实验基础上现作如下假定:用单位的水清洗1次后,衣服上残留的污渍与本次清洗前残留的污渍之比为函数(1)①试解释与的实际意义;②写出函数应该满足的条件或具有的性质(写出至少2条,不需要证明);(2)现有单位量的水,可以清洗一次,也可以把水平均分成2份后清洗两次.哪种方案清洗后衣服上残留的污渍比较少?请说明理由

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】利用函数的奇偶性的定义逐一判断即可.【详解】A,因为函数定义域为:,且,所以为奇函数,故错误;B,因为函数定义域为:R,,而,所以函数为非奇非偶函数,故错误;C,,因为函数定义域为:R,,而,所以函数为非奇非偶函数,故错误;D,因为函数定义域为:R,,所以函数为偶函数,故正确;故选:D.2、D【解析】由五点作图知,,解得,,所以,令,解得<<,,故单调减区间为(,),,故选D.考点:三角函数图像与性质3、D【解析】利用中间量来比较三者的大小关系【详解】由题.所以.故选:D4、B【解析】由题意连接EH、FG、BD,则P∈EH且P∈FG,再根据两直线分别在平面ABD和BCD内,根据公理3则点P一定在两个平面的交线BD上【详解】如图:连接EH、FG、BD,∵EH、FG所在直线相交于点P,∴P∈EH且P∈FG,∵EH⊂平面ABD,FG⊂平面BCD,∴P∈平面ABD,且P∈平面BCD,由∵平面ABD∩平面BCD=BD,∴P∈BD,故选B【点睛】本题考查公理3的应用,即根据此公理证明线共点或点共线问题,必须证明此点是两个平面的公共点,可有点在线上,而线在面上进行证明5、B【解析】代入特殊点的坐标即可判断答案.【详解】设函数为,由图可知,,排除C,D,又,排除A.故选:B.6、B【解析】因为函数的定义域为,故函数有意义只需即可,解得,选B考点:1、函数的定义域的概念;2、复合函数求定义域7、C【解析】由已知得,,去分母得,,所以,又因为,,所以,即,选考点:同角间的三角函数关系,两角和与差的正弦公式8、C【解析】根据的最值得出,根据周期得出,利用特殊点计算,从而得出的解析式,再计算.【详解】由函数的最小值可知:,函数的周期:,则,当时,,据此可得:,令可得:,则函数的解析式为:,.故选:C.【点睛】本题考查了三角函数的图象与性质,属于中档题.9、D【解析】判断奇偶性,再利用函数值的正负排除三个错误选项,得正确结论【详解】,为偶函数,排除BC,又时,,时,,排除A,故选:D10、A【解析】∵∴故选A;【考点】:此题重点考察向量加减、数乘的坐标运算;【突破】:准确应用向量的坐标运算公式是解题的关键;二、填空题:本大题共6小题,每小题5分,共30分。11、,关于的方程无实数解【解析】直接利用特称命题的否定为全称命题求解即可.【详解】因为特称命题的否定为全称命题,否定特称命题是,既要否定结论,又要改变量词,所以命题“,使关于的方程有实数解”的否定为:“,关于的方程无实数解”.故答案为:,关于的方程无实数解12、【解析】根据题意,结合限制条件,解指数不等式,即可求解.【详解】根据题意,由,解得且,因此定义域为.故答案为:.13、②【解析】对于①,,则,位置关系不确定,的位置关系不能确定;对于②,由垂直于同一平面的两直线平行知,结论正确;对于③,,则或;对于④,,则或,故答案为②.【方法点晴】本题主要考查线面平行的判定与性质、面面垂直的性质及线面垂直的判定,属于难题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.14、.【解析】本题直接运算即可得到答案.【详解】解:,故答案为:.【点睛】本题考查指数幂的运算、对数的运算,是基础题.15、8【解析】设甲车间数据依次为,乙车间数据依次,根据两个车间的平均数和方差分别求出所有数据之和以及所有数据平方和即可得解.【详解】设甲车间数据依次为,乙车间数据依次,,,所以,,,所以这40个数据平均数,方差=6.75≈6.8.所以可以判定该工厂这种零点的方差估计值为6.8故答案为:6.816、【解析】由扇形的圆心角与面积求得半径再利用弧长公式即可求弧长.【详解】设扇形的半径为r,由扇形的面积公式得:,解得,该扇形的弧长为.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)或.【解析】(1)根据题意,分离参数且利用对数型复合函数的单调性求得的值域,即可求得参数的取值范围;(2)根据是偶函数求得参数,再根据题意,求解指数方程即可求得的取值范围.【小问1详解】由题意知函数存零点,即有解.又,易知在上是减函数,又,,即,所以,所以的取值范围是.【小问2详解】的定义域为,若是偶函数,则,即解得.此时,,所以即为偶函数.又因为函数与的图象有且只有一个公共点,故方程只有一解,即方程有且只有一个实根令,则方程有且只有一个正根①当时,,不合题意,②当时,方程有两相等正根,则,且,解得,满足题意;③若一个正根和一个负根,则,即时,满足题意,综上所述:实数的取值范围为或.【点睛】本题考察利用函数奇偶性求参数值,以及对数方程的求解,对数型复合函数值域的求解,解决问题的关键是熟练的掌握对数函数的性质,属综合困难题.18、(1),342(2)189.8,190【解析】(1)由每个小长方形的面积的总和等于,即可通过列方程求出值,根据频数样本容量频率即可求出抽到的树苗的高度在的株数;(2)由频率分布直方图中每个小长方形的面积与对应小正方形底边中点的横坐标的乘积之和即为平均数,即可算出,利用平分频率分布直方图面积且垂直于横轴的直线与横轴交点的横坐标即为中位数,即可算出.【小问1详解】∵,∴,抽到的树苗的高度在的株数为(株)【小问2详解】苗圃中树苗的高度的平均数:设中位数为,因为,,则,,所以.19、(1)(2)【解析】(1)利用指数幂计算公式化简求值;(2)利用对数计算公式换件求值.【小问1详解】【小问2详解】.20、(1),;(2).【解析】(1)由三角函数的定义得到,进而代入计算;(2)由已知得,将所求利用诱导公式转化即得.【详解】解:(1)因为,所以,由三角函数定义,得.所以.(2)因为,所以,所以.【点睛】本题考查三角函数的定义,三角函数性质,诱导公式.考查运算求解能力,推理论证能力.考查转化与化归,数形结合等数学思想.已知求时要将已知中角作为整体不分离,观察所求中的角与已知中的角的关系,利用诱导公式直接转化是化简求值的常见类型.21、(1)表示没有用水清洗时,衣服上的污渍不变;表示用1个单位的水清洗时,可清除衣服上残留的污渍的;定义域为,值域为,在区间内单调递减.(2)当时,,此时两种清洗方法效果相同;当时,,此时把单位的水平均分成份后,清洗两次,残留的污渍较少;当时,,此时用单位的水清洗一次后残留的污渍较少.【解析】(1)①根据函数的实际意义说明即可;②由实际意义可得出函数的定义域,值域,单调性.(2)求出两种清洗方法污渍的残

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论