版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省广州市番禺区禺山中学2025届数学高三上期末综合测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.中国古典乐器一般按“八音”分类.这是我国最早按乐器的制造材料来对乐器进行分类的方法,最先见于《周礼·春官·大师》,分为“金、石、土、革、丝、木、匏(páo)、竹”八音,其中“金、石、木、革”为打击乐器,“土、匏、竹”为吹奏乐器,“丝”为弹拨乐器.现从“八音”中任取不同的“两音”,则含有打击乐器的概率为()A. B. C. D.2.若不等式对恒成立,则实数的取值范围是()A. B. C. D.3.著名的斐波那契数列:1,1,2,3,5,8,…,满足,,,若,则()A.2020 B.4038 C.4039 D.40404.已知双曲线C:=1(a>0,b>0)的右焦点为F,过原点O作斜率为的直线交C的右支于点A,若|OA|=|OF|,则双曲线的离心率为()A. B. C.2 D.+15.函数的大致图象为A. B.C. D.6.为了贯彻落实党中央精准扶贫决策,某市将其低收入家庭的基本情况经过统计绘制如图,其中各项统计不重复.若该市老年低收入家庭共有900户,则下列说法错误的是()A.该市总有15000户低收入家庭B.在该市从业人员中,低收入家庭共有1800户C.在该市无业人员中,低收入家庭有4350户D.在该市大于18岁在读学生中,低收入家庭有800户7.在区间上随机取一个数,使直线与圆相交的概率为()A. B. C. D.8.已知复数,满足,则()A.1 B. C. D.59.已知双曲线的实轴长为,离心率为,、分别为双曲线的左、右焦点,点在双曲线上运动,若为锐角三角形,则的取值范围是()A. B. C. D.10.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如图,白圈为阳数,黑点为阴数,若从阴数和阳数中各取一数,则其差的绝对值为5的概率为A. B. C. D.11.已知向量,则()A.∥ B.⊥ C.∥() D.⊥()12.设复数z=,则|z|=()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若函数(R,)满足,且的最小值等于,则ω的值为___________.14.如图所示,点,B均在抛物线上,等腰直角的斜边为BC,点C在x轴的正半轴上,则点B的坐标是________.15.已知关于空间两条不同直线m、n,两个不同平面、,有下列四个命题:①若且,则;②若且,则;③若且,则;④若,且,则.其中正确命题的序号为______.16.已知,,,,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱柱中,平面ABC.(1)证明:平面平面(2)求二面角的余弦值.18.(12分)过点P(-4,0)的动直线l与抛物线相交于D、E两点,已知当l的斜率为时,.(1)求抛物线C的方程;(2)设的中垂线在轴上的截距为,求的取值范围.19.(12分)某校为了解校园安全教育系列活动的成效,对全校学生进行了一次安全意识测试,根据测试成绩评定“合格”“不合格”两个等级,同时对相应等级进行量化:“合格”记5分,“不合格”记0分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如下:等级不合格合格得分频数624(1)由该题中频率分布直方图求测试成绩的平均数和中位数;(2)其他条件不变,在评定等级为“合格”的学生中依次抽取2人进行座谈,每次抽取1人,求在第1次抽取的测试得分低于80分的前提下,第2次抽取的测试得分仍低于80分的概率;(3)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中抽取10人进行座谈.现再从这10人中任选4人,记所选4人的量化总分为,求的数学期望.20.(12分)设数列,的各项都是正数,为数列的前n项和,且对任意,都有,,,(e是自然对数的底数).(1)求数列,的通项公式;(2)求数列的前n项和.21.(12分)是数列的前项和,且.(1)求数列的通项公式;(2)若,求数列中最小的项.22.(10分)如图,椭圆的左、右顶点分别为,,上、下顶点分别为,,且,为等边三角形,过点的直线与椭圆在轴右侧的部分交于、两点.(1)求椭圆的标准方程;(2)求四边形面积的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
分别求得所有基本事件个数和满足题意的基本事件个数,根据古典概型概率公式可求得结果.【详解】从“八音”中任取不同的“两音”共有种取法;“两音”中含有打击乐器的取法共有种取法;所求概率.故选:.【点睛】本题考查古典概型概率问题的求解,关键是能够利用组合的知识求得基本事件总数和满足题意的基本事件个数.2、B【解析】
转化为,构造函数,利用导数研究单调性,求函数最值,即得解.【详解】由,可知.设,则,所以函数在上单调递增,所以.所以.故的取值范围是.故选:B【点睛】本题考查了导数在恒成立问题中的应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.3、D【解析】
计算,代入等式,根据化简得到答案.【详解】,,,故,,故.故选:.【点睛】本题考查了斐波那契数列,意在考查学生的计算能力和应用能力.4、B【解析】
以为圆心,以为半径的圆的方程为,联立,可求出点,则,整理计算可得离心率.【详解】解:以为圆心,以为半径的圆的方程为,联立,取第一象限的解得,即,则,整理得,则(舍去),,.故选:B.【点睛】本题考查双曲线离心率的求解,考查学生的计算能力,是中档题.5、A【解析】
因为,所以函数是偶函数,排除B、D,又,排除C,故选A.6、D【解析】
根据给出的统计图表,对选项进行逐一判断,即可得到正确答案.【详解】解:由题意知,该市老年低收入家庭共有900户,所占比例为6%,则该市总有低收入家庭900÷6%=15000(户),A正确,该市从业人员中,低收入家庭共有15000×12%=1800(户),B正确,该市无业人员中,低收入家庭有15000×29%%=4350(户),C正确,该市大于18岁在读学生中,低收入家庭有15000×4%=600(户),D错误.故选:D.【点睛】本题主要考查对统计图表的认识和分析,这类题要认真分析图表的内容,读懂图表反映出的信息是解题的关键,属于基础题.7、C【解析】
根据直线与圆相交,可求出k的取值范围,根据几何概型可求出相交的概率.【详解】因为圆心,半径,直线与圆相交,所以,解得所以相交的概率,故选C.【点睛】本题主要考查了直线与圆的位置关系,几何概型,属于中档题.8、A【解析】
首先根据复数代数形式的除法运算求出,求出的模即可.【详解】解:,,故选:A【点睛】本题考查了复数求模问题,考查复数的除法运算,属于基础题.9、A【解析】
由已知先确定出双曲线方程为,再分别找到为直角三角形的两种情况,最后再结合即可解决.【详解】由已知可得,,所以,从而双曲线方程为,不妨设点在双曲线右支上运动,则,当时,此时,所以,,所以;当轴时,,所以,又为锐角三角形,所以.故选:A.【点睛】本题考查双曲线的性质及其应用,本题的关键是找到为锐角三角形的临界情况,即为直角三角形,是一道中档题.10、A【解析】
阳数:,阴数:,然后分析阴数和阳数差的绝对值为5的情况数,最后计算相应概率.【详解】因为阳数:,阴数:,所以从阴数和阳数中各取一数差的绝对值有:个,满足差的绝对值为5的有:共个,则.故选:A.【点睛】本题考查实际背景下古典概型的计算,难度一般.古典概型的概率计算公式:.11、D【解析】
由题意利用两个向量坐标形式的运算法则,两个向量平行、垂直的性质,得出结论.【详解】∵向量(1,﹣2),(3,﹣1),∴和的坐标对应不成比例,故、不平行,故排除A;显然,•3+2≠0,故、不垂直,故排除B;∴(﹣2,﹣1),显然,和的坐标对应不成比例,故和不平行,故排除C;∴•()=﹣2+2=0,故⊥(),故D正确,故选:D.【点睛】本题主要考查两个向量坐标形式的运算,两个向量平行、垂直的性质,属于基础题.12、D【解析】
先用复数的除法运算将复数化简,然后用模长公式求模长.【详解】解:z====﹣﹣,则|z|====.故选:D.【点睛】本题考查复数的基本概念和基本运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】
利用辅助角公式化简可得,由题可分析的最小值等于表示相邻的一个对称中心与一个对称轴的距离为,进而求解即可.【详解】由题,,因为,,且的最小值等于,即相邻的一个对称中心与一个对称轴的距离为,所以,即,所以,故答案为:1【点睛】本题考查正弦型函数的对称性的应用,考查三角函数的化简.14、【解析】
设出两点的坐标,结合抛物线方程、两条直线垂直的条件以及两点间的距离公式列方程,解方程求得的坐标.【详解】设,由于在抛物线上,所以.由于三角形是等腰直角三角形,,所以.由得,化为,可得,所以,解得,则.所以.故答案为:【点睛】本题考查抛物线的方程和运用,考查方程思想和运算能力,属于中档题.15、③④【解析】
由直线与直线的位置关系,直线与平面的位置关系,面面垂直的判定定理和线面垂直的定义判断.【详解】①若且,的位置关系是平行、相交或异面,①错;②若且,则或者,②错;③若,设过的平面与交于直线,则,又,则,∴,③正确;④若,且,由线面垂直的定义知,④正确.故答案为:③④.【点睛】本题考查直线与直线的位置关系,直线与平面的位置关系,面面垂直的判定定理和线面垂直的定义,考查空间线面间的位置关系,掌握空间线线、线面、面面位置关系是解题基础.16、【解析】
由已知利用同角三角函数的基本关系式可求得,的值,由两角差的正弦公式即可计算得的值.【详解】,,,,,,,,.故答案为:【点睛】本题主要考查了同角三角函数的基本关系、两角差的正弦公式,需熟记公式,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】
(1)证明平面即平面平面得证;(2)分别以所在直线为x轴,y轴.轴,建立如图所示的空间直角坐标系C-xyz,再利用向量方法求二面角的余弦值.【详解】(1)证明:因为平面ABC,所以因为.所以.即又.所以平面因为平面.所以平面平面(2)解:由题可得两两垂直,所以分别以所在直线为x轴,y轴.轴,建立如图所示的空间直角坐标系C-xyz,则,所以设平面的一个法向量为,由.得令,得又平面,所以平面的一个法向量为.所以二面角的余弦值为.【点睛】本题主要考查空间几何位置关系的证明,考查二面角的计算,意在考查学生对这些知识的理解掌握水平.18、;【解析】
根据题意,求出直线方程并与抛物线方程联立,利用韦达定理,结合,即可求出抛物线C的方程;设,的中点为,把直线l方程与抛物线方程联立,利用判别式求出的取值范围,利用韦达定理求出,进而求出的中垂线方程,即可求得在轴上的截距的表达式,然后根据的取值范围求解即可.【详解】由题意可知,直线l的方程为,与抛物线方程方程联立可得,,设,由韦达定理可得,,因为,,所以,解得,所以抛物线C的方程为;设,的中点为,由,消去可得,所以判别式,解得或,由韦达定理可得,,所以的中垂线方程为,令则,因为或,所以即为所求.【点睛】本题考查抛物线的标准方程和直线与抛物线的位置关系,考查向量知识的运用;考查学生分析问题、解决问题的能力和运算求解能力;属于中档题.19、(1)64,65;(2);(3).【解析】
(1)根据频率分布直方图及其性质可求出,平均数,中位数;(2)设“第1次抽取的测试得分低于80分”为事件,“第2次抽取的测试得分低于80分”为事件,由条件概率公式可求出;(3)从评定等级为“合格”和“不合格”的学生中随机抽取10人进行座谈,其中“不合格”的学生数为,“合格”的学生数为6;由题意可得,5,10,15,1,利用“超几何分布”的计算公式即可得出概率,进而得出分布列与数学期望.【详解】由题意知,样本容量为,.(1)平均数为,设中位数为,因为,所以,则,解得.(2)由题意可知,分数在内的学生有24人,分数在内的学生有12人.设“第1次抽取的测试得分低于80分”为事件,“第2次抽取的测试得分低于80分”为事件,则,所以.(3)在评定等级为“合格”和“不合格”的学生中用分层抽样的方法抽取10人,则“不合格”的学生人数为,“合格”的学生人数为.由题意可得的所有可能取值为0,5,10,15,1.,.所以的分布列为0510151.【点睛】本题主要考查了频率分布直方图的性质、分层抽样、超几何分布列及其数学期望,考查了计算能力,属于中档题.20、(1),(2)【解析】
(1)当时,,与作差可得,即可得到数列是首项为1,公差为1的等差数列,即可求解;对取自然对数,则,即是以1为首项,以2为公比的等比数列,即可求解;(2)由(1)可得,再利用错位相减法求解即可.【详解】解:(1)因为,,①当时,,解得;当时,有,②由①②得,,又,所以,即数列是首项为1,公差为1的等差数列,故,又因为,且,取自然对数得,所以,又因为,所以是以1为首项,以2为公比的等比数列,所以,即(2)由(1)知,,所以,③,④③减去④得:,所以【点睛】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《供应商档案管理》课件
- 《园林景观分析》课件
- 人教版八年级生物下册第八单元健康地生活第三章第二、三章章末总结教学课件
- 《密尔沃基美术馆》课件
- 单位管理制度汇编大全员工管理篇
- 单位管理制度合并汇编【职工管理篇】
- 单位管理制度分享合集职员管理十篇
- 单位管理制度范文大合集【人力资源管理篇】十篇
- 单位管理制度范例汇编职工管理篇
- 单位管理制度呈现汇编【人事管理篇】
- 人教版(2024)数学七年级上册期末测试卷(含答案)
- ISO28000:2022供应链安全管理体系
- 危险化学品MSDS(聚乙烯)
- 汽车发动机机械系统检修课件(全)全书教学教程完整版电子教案最全幻灯片
- 纸箱类检测讲解
- DB32∕T 3216-2017 机动车驾驶员培训机构服务规范
- DB22∕T 2880-2018 建筑消防设施维护保养规程
- 进化生物学第3版课后习题答案
- 2022年新媒体编辑实战教程试题带答案(题库)
- 在一日活动中培养幼儿亲社会行为的实践研究报告
- 【课文翻译】新人教必修三 Unit 1-Unit5 课文翻译(英汉对照)
评论
0/150
提交评论