2025届广东省深圳市耀华实验学校高二上数学期末联考试题含解析_第1页
2025届广东省深圳市耀华实验学校高二上数学期末联考试题含解析_第2页
2025届广东省深圳市耀华实验学校高二上数学期末联考试题含解析_第3页
2025届广东省深圳市耀华实验学校高二上数学期末联考试题含解析_第4页
2025届广东省深圳市耀华实验学校高二上数学期末联考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届广东省深圳市耀华实验学校高二上数学期末联考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知实数,满足不等式组,若,则的最小值为()A. B.C. D.2.已知双曲线的左右焦点分别为、,过点的直线交双曲线右支于A、B两点,若是等腰三角形,且,则的周长为()A. B.C. D.3.在中,,,且BC边上的高为,则满足条件的的个数为()A.3 B.2C.1 D.04.已知,,,,则()A. B.C. D.5.若双曲线的一个焦点为,则的值为()A. B.C.1 D.6.已知a,b为不相等实数,记,则M与N的大小关系为()A. B.C. D.不确定7.接种疫苗是预防控制新冠疫情最有效的方法,我国自2021年1月9日起实施全民免费接种新冠疫苗并持续加快推进接种工作.某地为方便居民接种,共设置了A、B、C三个新冠疫苗接种点,每位接种者可去任一个接种点接种.若甲、乙两人去接种新冠疫苗,则两人不在同一接种点接种疫苗的概率为()A. B.C. D.8.已知函数只有一个零点,则实数的取值范围是()A B.C. D.9.已知数列的前n项和为,,,则()A. B.C. D.10.是直线与直线互相平行的()条件A.必要而不充分 B.充分而不必要C.充要 D.既不充分也不必要11.已知椭圆的左右焦点分别为、,点在椭圆上,若、、是一个直角三角形的三个顶点,则点到轴的距离为A B.4C. D.12.总体有编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取3个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第3个个体的编号为()7816657208026314070243699728019832049234493582003623486969387481A.08 B.02C.63 D.14二、填空题:本题共4小题,每小题5分,共20分。13.已知空间直角坐标系中,点,,若,与同向,则向量的坐标为______.14.若圆柱的高、底面半径均为1,则其表面积为___________15.已知某圆锥的高为4,体积为,则其侧面积为________16.总书记在“十九大”报告中指出:坚定文化自信,推动中华优秀传统文化创造性转化.“杨辉三角”揭示了二项式系数在三角形中的一种几何排列规律,最早在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现,欧洲数学家帕斯卡在1654年才发现这一规律,比杨辉要晚近四百年.“杨辉三角”是中国数学史上的一个伟大成就,激发起一批又一批数学爱好者的探究欲望.如图所示,在由二项式系数所构成的“杨辉三角中,第10行第8个数是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)若存在常数,使得对任意,,均有,则称为有界集合,同时称为集合的上界.(1)设,,试判断A、B是否为有界集合,并说明理由;(2)已知常数,若函数为有界集合,求集合的上界最小值.18.(12分)在平面直角坐标系中,已知点.点M满足.记M的轨迹为C.(1)求C的方程;(2)直线l经过点,与轨迹C分别交于点M、N,与直线交于点Q,求证:.19.(12分)已知数列的前项和,且(1)证明:数列为等差数列;(2)设,记数列的前项和为,若,对任意恒成立,求实数的取值范围20.(12分)已知数列满足,.(1)求证数列是等差数列,并求通项公式;(2)已知数列的前项和为,求.21.(12分)求下列不等式的解集:(1);(2)22.(10分)某市共有居民60万人,为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照,,……分成9组,制成了如图所示的频率分布直方图(1)求直方图中的a值,并估计该市居民月均用水量不少于3吨的人数(单位:人);(2)估计该市居民月均用水量的众数和中位数

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】作出不等式组对应的平面区域,然后根据线性规划的几何意义求得答案.【详解】作出不等式组所对应的可行域如图三角形阴影部分,平行移动直线直线,可以看到当移动过点A时,在y轴上的截距最小,联立,解得,当且仅当动直线即过点时,取得最小值为,故选:B2、A【解析】设,.根据双曲线的定义和等腰三角形可得,再利用余弦定理可求得,从而可得的周长.【详解】由双曲线可得设,.则,,所以,因为是等腰三角形,且,所以,即,所以,所以,,在中,由余弦定理得,即,所以,解得,的周长故选:A【点睛】关键点点睛:根据双曲线的定义求解是解题关键.3、B【解析】利用等面积法求得,再利用正弦定理求得,利用内角和的关系及两角和差化积公式,二倍角公式转化为,再利用正弦函数的性质求满足条的的个数,即可求解.【详解】由三角形的面积公式知,即由正弦定理知所以,即,即,即利用两角和的正弦公式结合二倍角公式化简得又,则,,且由正弦函数的性质可知,满足的有2个,即满足条件的的个数为2.故选:B4、D【解析】根据对数函数的性质和幂函数的单调性可得正确的选项.【详解】因为,故,故,又,在上的增函数,故,故,故选:D.5、B【解析】由题意可知双曲线的焦点在轴,从而可得,再列方程可求得结果【详解】因为双曲线的一个焦点为,所以,,所以,解得,故选:B6、A【解析】利用作差法即可比较M与N的大小﹒【详解】因为,又,所以,即故选:A7、C【解析】利用古典概型的概率公式可求出结果【详解】由题知,基本事件总数为甲、乙两人不在同一接种点接种疫苗的基本事件数为由古典概型概率计算公式可得所求概率故选:8、B【解析】将题目转化为函数的图像与的图像只有一个交点,利用导数研究函数的单调性与极值,作出图像,利用数形结合求出的取值范围.【详解】由函数只有一个零点,等价于函数的图像与的图像只有一个交点,,求导,令,得当时,,函数在上单调递减;当时,,函数在上单调递增;当时,,函数在上单调递减;故当时,函数取得极小值;当时,函数取得极大值;作出函数图像,如图所示,由图可知,实数的取值范围是故选:B【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.9、D【解析】根据给定递推公式求出即可计算作答.【详解】因数列的前n项和为,,,则,,,所以.故选:D10、B【解析】求出直线与平行的等价条件,再利用充分条件、必要条件的定义判断作答.【详解】由解得或,当时,与平行,当时,与平行,则直线与直线平行等价于或,所以是直线与直线互相平行的充分而不必要条件.故选:B11、D【解析】设椭圆短轴的一个端点为根据椭圆方程求得c,进而判断出,即得或令,进而可得点P到x轴的距离【详解】解:设椭圆短轴的一个端点为M由于,,;,只能或令,得,故选D【点睛】本题主要考查了椭圆的基本应用考查了学生推理和实际运算能力是基础题12、D【解析】由随机数表法抽样原理即可求出答案.【详解】根据题意,依次读出的数据为65(舍去),72(舍去),08,02,63(舍去),14,即第三个个体编号为14.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求出坐标,根据给条件表示出坐标,利用向量模的坐标表示计算作答.【详解】因,,则,因与同向,则设,因此,,于是得,解得,则,所以向量的坐标为.故答案为:14、【解析】根据圆柱表面积公式求解即可.【详解】根据题意得到圆柱的高,底面半径,则表面积.故答案为:15、【解析】设该圆锥的底面半径为r,由圆锥的体积V=πr2h,可解得r的值,再由勾股定理求得圆锥的母线长l,而侧面积S=πrl,代入数据即可得解【详解】设该圆锥的底面半径为r,圆锥的体积V=πr2h=πr2×4=12π,解得r=3∴圆锥母线长l==5,∴侧面积S=πrl=15π故答案为:15π【点睛】本题考查圆锥的侧面积和体积的计算,理解圆锥的结构特征是解题的关键,考查学生的空间立体感和运算能力,属于基础题16、120【解析】根据二项式的展开式系数的相关知识即可求解.【详解】因为,二项式展开式第项的系数为,所以,第10行第8个数是.故答案为:120三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)A不是有界集合,B是有界集合,理由见解析(2)【解析】(1)解不等式求得集合A;由,根据指数函数的性质求得集合B,由此可得结论;(2)由函数,得出函数单调递减,即有,分和两种情况讨论,求得集合的上界,再由集合的上界函数的单调性可求得集合的上界的最小值.【小问1详解】解:由得,即,,对任意一个,都有一个,故不是有界集合;,,,,是有界集合,上界为1;【小问2详解】解:,因为,所以函数单调递减,,因为函数为有界集合,所以分两种情况讨论:当,即时,集合的上界,当时,不等式为;当时,不等式为;当时,不等式为,即时,集合的上界,当,即时,集合的上界,同上解不等式得的解为,即时,集合的上界,综上得时,集合的上界;时,集合的上界.时,集合的上界是一个减函数,所以此时,时,集合的上界是增函数,所以,所以集合的上界最小值为;18、(1)(2)证明见解析【解析】(1)根据已知得点M的轨迹C为椭圆,根据椭圆定义可得方程;(2)直线的方程设为,与椭圆方程联立,利用韦达定理及线段长公式进行计算即可.【小问1详解】由椭圆定义得,点M的轨迹C为以点为焦点,长轴长为4的椭圆,设此椭圆的标准方程为,则由题意得,所以C方程为;【小问2详解】设点的坐标分别为,由题意知直线的斜率一定存在,设为,则直线的方程可设为,与椭圆方程联立可得,由韦达定理知,所以,,又因为,所以又由题知,所以,所以,所以,得证.19、(1)证明见解析(2)【解析】(1)利用可得答案;(2)利用错位相减可得,转化为对任意,恒成立,求出的最大值可得答案小问1详解】当时,由,得或(舍去),由,得,①当时,,②由①-②,得,整理得,因为,所以所以是首项为1,公差为1的等差数列【小问2详解】由(1)可得,所以,③,④由③-④,得,即,由得,所以,即,该式对任意恒成立,因此,所以的取值范围是20、(1)证明见详解,(2)【解析】(1)由题意将原式化简变形得到,可证明数列是等差数列,由等差数列的通项公式则可得,进而得到的通项公式;(2)由(1)把的通项公式代入,得到,利用乘公比错位相减法求和即可.【小问1详解】若,则,这与矛盾,,由已知得,,故数列是以为首项,2为公差的等差数列,,即.【小问2详解】设,则由(1)知,所以,,两式相减,则,所以.21、(1)(2)【解析】(1)利用一元二次不等式的解法求解;(2)利用分式不等式的解法求解.【小问1详解】解:因为,所以,解得,所以不等式的解集是;【小问2详解】因为,所以,所以,即,解得,所以不等式的解集是.22、(1)a0.3,72000人;(2)众数2.25;中位数2.04.【解析】(1)根据所有小长方形面积和为1即可求得参数,结合

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论