版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数字信号处理Lecture8:FastFourierTransformation快速离散傅里叶变换算法(FFT)必要性两者计算量相同,差别仅在指数的符号和因子1/N,可以复用同一段程序代码实现。DFTIDFT计算一个X(k)的值需要N次复数乘法运算,和N-1次复数加法运算;所有的X(k)就要N2次复数乘法运算,N(N-1)次复数加法运算;例如,当N=1024时,算一个点的DFT需要进行2,097,151次运算;当点数较多时,DFT的计算量巨大,难以通过普通硬件进行实时计算Tuesday,October15,202431965年,JamesWilliamCooley和JohnTukey首先提出FFT算法求解DFT(CarlFriedrichGauss,1805);对于N点FFT,总共需要的复数加法和乘法运算为(3N/2)log2N,远远小于普通DFT所需要的2N2-N次;例如N=1024=210
时,需要(3*1024/2)log2210=15360,效率提高100多倍!快速离散傅里叶变换算法(FFT)基本思想:把N点的DFT不断的分解成点数更小的DFT,利用旋转因子WNnk的对称性和周期性对分解后的运算进一步简化,在N等于2的次幂时,这种分解可以一直进行到最后分解成许多2点DFT。Decimation-in-Time(DIT)Radix-2&Decimation-in-Frequency(DIF)Radix-2按时间抽取基-2FFT(DIT)Tuesday,October15,20244对于复序列x(n),设N=2r,如果点数不是2的次幂,则对序列补零处理使之成为2的次幂,按n值的奇偶将序列分成两部分分别做DFTDFT(1)(2)代入旋转因子特性(3)(4)进一步,对上式按照k值分成两半来计算,即先计算k值在区间[0,N/2-1]的N/2个点,然后求剩下N/2个点,前半部分可表示为:Tuesday,October15,20245为方便计算,把(4)式右边写成Xe(k)与Xo(k)的形式,注意k值范围[0,N-1],与r值范围有区别。后半部分,即k取值[N/2,N-1]的部分可如下得到:(4)(5)(6)按时间抽取基-2FFT(DIT)按时间抽取基-2FFT(DIT)Tuesday,October15,20246注意(6)式中X的周期为N/2,具有如下性质:(7)把这些性质代入(6)式可得:(8)k值在[0,N-1]内的DFT可以表示为:(9)又知旋转因子特性蝶运算Tuesday,October15,20247(9)式运算的流图称为蝶运算,如下图所示-1(9)(ButterflyDiagram)以N=8时的DFT为例,可以分解为两个4点的DFT(1)n为偶数时蝶运算(2)n为奇数时(3)对X
e(k)和Xo(k)进行蝶形运算
前半部为X(0)-X(3),后半部分为X(4)-X(7),整个过程如下图所示:蝶运算(ButterflyDiagram)蝶运算计算每N/2点的DFT需要的计算量为(N/2)2次复数乘法和(N/2)2-N/2次复数加法运算计算每个蝶形需要1次复数乘法和2次复数加法乘法加法共计:v.s.2N2-N-1(ButterflyDiagram)上述8点蝶运算可以继续分解,即把每个长度N/2点的序列Xe(k)和Xo(k)再分别分解为两个长度为N/4的序列,这样把两个N/2点DFT分为了4个N/4点DFT。蝶运算(ButterflyDiagram)N=2r,经过r-1次分解后,最后得到了N/2个两点DFT,如下图N=8时Tuesday,October15,202412注意上图中左侧输入端的序列顺序,第一次分解后:第二次分解后,把X(0)-X(3)按奇数和偶数项重新分组,导致对应输入项顺序改变输入时间序列排序N/4点DFTN/4点DFTTuesday,October15,202413输入时间序列排序每分解一次都会导致类似的效应,使得输入端顺序打乱,可以采用倒序二进制数来确定输入端的序号输入序号二进制表示二进制倒序输出序号Tuesday,October15,202414DIT算法结构N=8时,共r=3级,每级8/2=4个蝶形单元;m=0级,共g=4组,每组含b=1个蝶形单元;m=1级,共g=2组,每组含b=2个蝶形单元;m=2级,共g=1组,每组含b=4个蝶形单元;算法由r次迭代完成用m表示迭代的级数,则第m级的蝶形单元是由第r-m次分解得到的,单元输出中上下节点的距离(即序号差)为:经过奇偶分组,第m级的组数为每次(级)迭代包含N/2个蝶形每组的蝶形单元个数为:Tuesday,October15,202415DIT算法结构算法由r次迭代完成用m表示迭代的级数,则第m级的蝶形单元是由第r-m次分解得到的,单元输出中上下节点的距离(即序号差)为:经过奇偶分组,第m级的组数为每次(级)迭代包含N/2个蝶形每组的蝶形单元个数为:复数乘法与加法的计算量分别为:习惯上称DIT的计算量有如下数量级DFT按频率抽取基-2FFT(DIF)Tuesday,October15,202416对于复序列x(n),设N=2r,如果点数不是2的次幂,则对序列补零处理使之成为2的次幂,按把序列从中间截断,再根据奇偶性分别讨论DFTDFT(1)(2)代入旋转因子特性(3)Tuesday,October15,202417按频率抽取基-2FFT(DIF)把(3)带入(2)得到:(4)注意这里k的取值,表明X(k)是N点DFTDIF算法中,对X(k)按照频率下标的奇偶性分成两部分计算偶数下标:(5)奇数下标:(6)Tuesday,October15,202418按频率抽取基-2FFT(DIF)上述过程可由下图表示Tuesday,October15,202419按频率抽取基-2FFT(DIF)与DIT类似,采用上述方法,一直进行r-1次分解,直到最后化成N/2个2点DFT为止-1DIF与DIT的主要区别:DIF的旋转因子在蝶形单元输出下节点之后,而DIT算法中旋转因子在蝶形单元输入下节点之前,但是二者的计算量相同Tuesday,October15,202420按频率抽取基-2FFT(DIF)8点DIF信号流程举例:Tuesday,October15,202421矩形序列矩形序列Tuesday,October15,202422长为L的矩形序列,做N点DFT矩形序列Tuesday,October15,202423相角的值与取样位置n0、长度L、总长N均相关k>0:k<0:在X(k)中,代入表达式ω=2kπ/N,得到DTFTTuesday,October15,202424主瓣两边有一系列旁瓣,离主瓣越远,幅度越小,但永远不会衰减为零,在进行数字滤波器设计时,这些旁瓣会导致一些问题:淹没相邻低振幅信号;通带内产生波纹;过渡带衰减变差;增加滤波器设计难度;主瓣宽度:主瓣两边第一个过零点的距离L=N时,主瓣宽度最小Tuesday,October15,202425k>0:k<0:Solution:例8.1求非对称矩形序列的DFT及频率响应Tuesday,October15,202426Solution:例8.1求非对称矩形序列的DFT及频率响应例8.2上例的序列左移,使得序列关于n=0对称,求对称矩形序列的DFT和频率响应Tuesday,October15,202427Ex3-11非对称矩形序列DFTEx3-12对称矩形序列DFTVS讨论:加窗截断的效应Tuesday,October15,202428截断后信号DFT:实际可分析信号长度的有限,等效为对无限时间信号进行了加窗截断,得到一个有限长序列为简化问题,考虑如下只含有一个频率分量、长度为N、包含M个完整周期、周期为T0的正弦信号Tuesday,October15,202429在M个完整周期内采样N个点后,采样间隔为:采样频率为:数字频率为:讨论:加窗截断的效应效应一:造成DTFT频谱泄露求截断后序列的DTFTTuesday,October15,202430效应一:造成DTFT频谱泄露求截断后序列的DTFTTuesday,October15,202431M=3,N=64加窗截断使得本应该集中在单频率点上的信号能量扩展到了整个频率范围,这种现象称为频率泄露。根据上式,截断后的频谱应该具有4个主瓣出现效应二:降低DTFT频率分辨率考虑如下含有两个频率分量的正弦信号:Tuesday,October15,202432加窗截断后做DTFT:Tuesday,October15,202433如果两个频率分量之间的差异小于主瓣宽度的一半,则两个频谱成分的主瓣合并,难以区分只有当频率差异大于主瓣宽度一半时,才能够观察到分开的主瓣,因此,主瓣宽度的一半可被定义为频率分辨率:对应于时间意义下的频率:与前述频率分辨率定义一致效应二:降低DTFT频率分辨率考虑如下含有两个频率分量的正弦信号:Tuesday
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 聚脲防腐施工方案
- 连锁餐饮审计方案
- 2025年仪用电源项目可行性分析报告
- 科技产业园项目可行性研究报告
- 中国机车制动软管项目投资可行性研究报告
- 舟山浙江舟山岱山县司法局招聘编外工作人员(二)笔试历年参考题库附带答案详解
- 白城2025年吉林白城市企事业单位招聘1104人笔试历年参考题库附带答案详解
- 浙江浙江省国际经济贸易学会招聘笔试历年参考题库附带答案详解
- 湖南2024年湖南省林业局直属事业单位招聘笔试历年参考题库附带答案详解
- 武汉2025年湖北武汉理工大学管理人员招聘笔试历年参考题库附带答案详解
- 2024年安徽省合肥市瑶海区中考语文一模试卷
- 单位车辆变更名称的委托书
- 粉尘外协单位清理协议书
- 2023年12月首都医科大学附属北京中医医院面向应届生招考聘用笔试近6年高频考题难、易错点荟萃答案带详解附后
- 茶室经营方案
- 军队文职岗位述职报告
- 小学数学六年级解方程练习300题及答案
- 电抗器噪声控制与减振技术
- 中医健康宣教手册
- 2024年江苏扬州市高邮市国有企业招聘笔试参考题库附带答案详解
- 消费医疗行业报告
评论
0/150
提交评论