




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题2网格类作图题中考题型训练1.(2022•荆州)如图,在10×10的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中△ABC为格点三角形.请按要求作图,不需证明.(1)在图1中,作出与△ABC全等的所有格点三角形,要求所作格点三角形与△ABC有一条公共边,且不与△ABC重叠;(2)在图2中,作出以BC为对角线的所有格点菱形.【分析】(1)根据全等三角形的判定画出图形即可;(2)根据菱形的定义画出图形即可.【解答】解:(1)如图1中,△ABD1,△ABD2,△ACD3,△ACD4,△CBD5即为所求;(2)如图2中,菱形ABDC,菱形BECF即为所求.2.(2022•宁波)图1,图2都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点,线段AB的端点均在格点上,分别按要求画出图形.(1)在图1中画出等腰三角形ABC,且点C在格点上.(画出一个即可)(2)在图2中画出以AB为边的菱形ABDE,且点D,E均在格点上.【分析】(1)结合等腰三角形的性质,找出点C的位置,再连线即可.(2)结合菱形的性质,找出点D,E的位置,再连线即可.【解答】解:(1)如图所示:(答案不唯一).(2)如图所示:3.(2022•丽水)如图,在6×6的方格纸中,点A,B,C均在格点上,试按要求画出相应格点图形.(1)如图1,作一条线段,使它是AB向右平移一格后的图形;(2)如图2,作一个轴对称图形,使AB和AC是它的两条边;(3)如图3,作一个与△ABC相似的三角形,相似比不等于1.【分析】(1)把点B、A向右作平移1个单位得到CD;(2)作A点关于BC的对称点D即可;(3)延长CB到D使CD=2CB,延长CA到E点使CE=2CA,则△EDC满足条件.【解答】解:(1)如图1,CD为所作;(2)如图2,(3)如图3,△EDC为所作.4.(2022•衢州)如图,在4×4的方格纸中,点A,B在格点上.请按要求画出格点线段(线段的端点在格点上),并写出结论.(1)在图1中画一条线段垂直AB.(2)在图2中画一条线段平分AB.【分析】(1)利用数形结合的思想作出图形即可;(2)利用矩形的对角线互相平分解决问题即可.【解答】解:(1)如图1中,线段EF即为所求(答案不唯一);(2)如图2中,线段EF即为所求(答案不唯一).5.(2022•长春)图①、图②、图③均是5×5的正方形网格,每个小正方形的边长均为1,其顶点称为格点,△ABC的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作图,保留作图痕迹.(1)网格中△ABC的形状是直角三角形;(2)在图①中确定一点D,连结DB、DC,使△DBC与△ABC全等;(3)在图②中△ABC的边BC上确定一点E,连结AE,使△ABE∽△CBA;(4)在图③中△ABC的边AB上确定一点P,在边BC上确定一点Q,连结PQ,使△PBQ∽△ABC,且相似比为1:2.【分析】(1)利用勾股定理的逆定理证明即可;(2)根据全等三角形的判定,作出图形即可;(3)根据相似三角形的判定作出图形即可;(4)作出AB,BC的中点P,Q即可.【解答】解:(1)∵AC==,AB==2,BC=5,∴AC2+AB2=BC2,∴∠BAC=90°,∴△ABC是直角三角形;故答案为:直角三角形;(2)如图①中,点D,点D′,点D″即为所求;(3)如图②中,点E即为所求;(4)如图③,点P,点Q即为所求.6.(2022•湖北)已知四边形ABCD为矩形,点E是边AD的中点,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.(1)在图1中作出矩形ABCD的对称轴m,使m∥AB;(2)在图2中作出矩形ABCD的对称轴n,使n∥AD.【分析】(1)如图1中,连接AC,BD交于点O,作直线OE即可;(2)如图2中,同法作出点O,连接BE交AC于点T,连接DT,延长TD交AB于点R,作直线OR即可.【解答】解:(1)如图1中,直线m即为所求;(2)如图2中,直线n即为所求;7.(2022•江西)如图是4×4的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作∠ABC的角平分线;(2)在图2中过点C作一条直线l,使点A,B到直线l的距离相等.【分析】(1)连接AC,取AC的中点P,作射线BP即可;(2)利用数形结合的射线画出图形即可.【解答】解:(1)如图1中,射线BP即为所求;(2)如图2中,直线l或直线l′即为所求.8.(2023•锡山区校级模拟)如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,C均落在格点上,点B在网格线上.(Ⅰ)线段AC的长等于;(Ⅱ)以AB为直径的半圆的圆心为O,在线段AB上有一点P,满足AP=AC.请用无刻度的直尺,在如图所示的网格中,画出点P.【分析】(Ⅰ)利用勾股定理求解即可;(Ⅱ)①取BC与网格线的交点D,②连接OD延长OD交⊙O于点E,③连接AE交BC于点G,④连接BE,延长AC交BE的延长线于F,⑤连接FG延长FG交AB于点P,点P即为所求.【解答】解:(Ⅰ)AC==.故答案为:;(Ⅱ)如图,①取BC与网格线的交点D,②连接OD延长OD交⊙O于点E,③连接AE交BC于点G,④连接BE,延长AC交BE的延长线于F,⑤连接FG延长FG交AB于点P,点P即为所求.9.(2023•鄞州区校级一模)如图,在6×6的方格纸中,每个小正方形的边长为1,点A,B均在格点上,在图1和图2中分别画出一个以点A,B为顶点且另两个顶点均在格点上的正方形,并分别求出其周长.【分析】分别根据“四条边相等且四个角相等的四边形是正方形”,“对角线互相垂直平分且相等的四边形是正方形“作图.【解答】解:如下图:正方形ABCD,正方形ACBD即为所求.10.(2023•衢州模拟)如图在7×7的方格中,有两个格点A、B.请用无刻度的直尺按要求画图.(1)在图1中画线段AB中点C;(2)在图2中在线段AB上找一点D,使AD:DB=1:2.【分析】(1)取格点E,F,连接EF交AB于点C,点C即为所求;(2)取格点J,K,连接JK交AB于点D,点D即为所求.【解答】解:(1)如图,点C即为所求;(2)如图,点D即为所求.理由:∵AJ∥BK,∴△ADJ∽△BDK,∴==.11.(2023•宁波模拟)作图题(1)填空:如果长方形的长为3,宽为2,那么对角线的长为.(2)如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点(端点),分别按下列要求画图(不要求写画法和证明,但要标注顶点).①在图1中,画一个面积为4的菱形,且邻边不垂直.②在图2中,画平行四边形ABCD,使∠A=45°,且面积为6.【分析】(1)根据勾股定理即可得到答案;(2)①根据正方形的性质得到MP和NQ互相平分,MP⊥NQ,则四边形MNPQ是菱形,再用勾股定理和菱形面积等于对角线乘积的一半,即可验证满足题意;②利用网格的特点构造一条边长为3,此边上的高为2,∠BAD=45°的平行四边形即可.【解答】JIE:(1)∵长方形的长为3,宽为2,∴对角线的长为=,故答案为:;(2)①如图,四边形MNPQ即为所求的菱形,由网格知,MP和NQ互相平分,∴四边形MNPQ是平行四边形,∵MP⊥NQ,∴四边形MNPQ是菱形,∵,NQ==,∴菱形MNPQ的面积是MP×NQ=×4×=4,故菱形MNPQ满足题意;②如图2,平行四边形ABCD满足题意,由图可知,AB∥CD,AB=CD=3,∴四边形ABCD是平行四边形,则平行四边形ABCD的面积=AB•DH=3×2=6,∵∠BAD=45°,∴平行四边形ABCD满足题意.12.(2023•杨浦区一模)新定义:由边长为1的小正方形构成的网格图形中,每个小正方形的顶点称为格点.如图,已知在5×5的网格图形中,△ABC的顶点A、B、C都在格点上.请按要求完成下列问题:(1)S△ABC=4;sin∠ABC=;(2)请仅用无刻度的直尺在线段AB上求作一点P,使S△ACP=S△ABC.(不要求写作法,但保留作图痕迹,写出结论)【分析】(1)由正方形面积减去三个直角三角形面积可求S△ABC,过A作AD⊥BC于D,用面积法可求AD的长,在Rt△ABD中可得sin∠ABC;(2)取格点E,F,连接EF交AB于P,由AE=BF可知AP=BP,从而AP=AB,即可得S△ACP=S△ABC,故P是满足条件的点.【解答】解:(1)由图可得:S△ABC=3×3﹣×1×3﹣×3×1﹣×2×2=4,过A作AD⊥BC于D,如图:∵וAD=4,∴AD=,∴sin∠ABC===,故答案为:4,;(2)如图:点P即为所求点.13.(2023•武汉模拟)如图是由小正方形组成的7×6网格,每个小正方形的顶点叫做格点.仅用无刻度的直尺在给定网格中完成画图.(1)在图(1)中,A,B,C三点是格点,画经过这三点的圆的圆心O,并在该圆上画点D,使AD=BC;(2)在图(2)中,A,E,F三点是格点,⊙I经过点A.先过点F画AE的平行线交⊙I于M,N两点,再画弦MN的中点G.【分析】(1)根据90°的圆周角所对的弦是直径;(2)根据网格线的特征或平行线,再根据平行弦所夹的弧相等,再根据等腰梯形的性质作图.【解答】解:如下图:(1)点D,O即为所求;(2)线段MN,点G即为所求.14.(2023•乌鲁木齐一模)请仅用无刻度的直尺在网格中完成下列作图,保留作图痕迹,不写作法.(1)图①是由边长为1的小等边三角形构成的网格,△ABC为格点三角形.在图①中,画出△ABC中AB边上的中线CM;(2)如图②,四边形ABCD中,AD∥BC,∠A=∠D,画出BC边的垂直平分线n.【分析】(1)作出AB的中点M,连接CM即可;(2)连接AC,BD交于点O,延长BA交CD的延长线于点S,作直线SO即可.【解答】解:(1)如图1中,线段CM即为所求.(2)如图2中,直线n即为所求.15.(2023•靖江市校级模拟)如图是由小正方形组成的9×7网格,每个小正方形的顶点叫做格点,A,B,C三个格点都在圆上.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)画出该圆的圆心O,并画出劣弧的中点D;(2)画出格点E,使EA为⊙O的一条切线,并画出过点E的另一条切线EF,切点为F.【分析】(1)连接AC,AC的中点O即为所,取格点M,N,连接MN交格线于等J,连接OJ,延长OJ交⊙O于点D,点D即为所求;(2)取格点E,作直线AE即可,取格点P,Q交格线于点K,连接AK交⊙O于点F,作直线EF,直线EF即为所求.【解答】解:(1)如图,点O,点D即为所求;(2)如图,直线AE,EF即为所求.16.(2023•九台区模拟)图①、图②、图③均是4×4的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A、B、C均在格点上.只用无刻度的直尺,在给定的网格中,按照要求作图(保留作图痕迹).(1)在图①中作△ABC的中线BD.(2)在图②中作△ABC的高BE.(3)在图③中作△ABC的角平分线BF.【分析】(1)利用网格特征作出AC的中点D,连接BD即可;(2)取格点T,连接BT交AC于点E,线段BE即为所求;(3)取格点W,连接BW交AC于点F,线段BF即为所求.【解答】解:(1)如图①中,线段BD即为所求;(2)如图②中,线段BE即为所求;(3)如图③中,线段BF即为所求.17.(2023•迁安市模拟)如图是由边长为1的小正方形组成的网格,△ABC的顶点均在格点上.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示,画图结果用实线表示.(1)在图(1)中画△ABC的高CH;(2)在图(1)的线段AC上画一点D,使得S△ABD:S△CBD=2:3;(3)在图(2)中C点的右侧画一点F,使∠FCA=∠BCA且CF=2.【分析】(1)取格点P,连接CP交AB于点H,线段CH即为所求作.(2)取格点M,N,连接MN交AC于点D,点D即为所求作.(3)取格线的中点R,连接CR,取格点K,格线的中点J,连接KJ交CR于点F,线段CF即为所求作.【解答】解:(1)如图1中,线段CH即为所求作.(2)如图2中,点D即为所求作.(3)如图2中,线段CF即为所求作.18.(2022•碧江区校级一模)操作理解,解答问题.(1)如图1:已知△ABC,AB=AC,直线CD∥AB;①完成作图:以点A为圆心,AB长为半径画弧,交直线CD于点P,连接PB.②试判断①中∠ABP与∠BAC的数量关系,并证明你的结论.(2)如图2:已知△ABC是格点三角形,点C在直线n上,且n∥AB;在直线n上画出点P,连接PB,使得∠PBA=∠CAB.(不用尺规作图)【分析】(1)①根据要求作出图形即可;②结论:∠APB=∠BAC.利用平行线的性质,圆周角定理证明即可.【解答】解:(1)①图形如图所示:②结论:∠APB=∠BAC.理由:∵CP∥AB,∴∠ABP=∠BPC,∵AB=AC=AP,∴∠BPC=∠BAC,∴∠ABP=∠BAC.(2)如图2中,∠APB=∠CAB.19.(2022•丽水模拟)图1,图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)在图1中画出一个以AC为底边的等腰△ABC,使点B落在格点上.(2)在图2中画出一个以AC为对角线且面积为6的格点矩形ABCD(顶点均在格点上).【分析】(1)根据等腰直角三角形的判定与性质,结合网格特点作图即可得;(2)根据矩形的判定与性质,结合网格特点作图即可得.【解答】解:(1)如图所示,等腰△ABC即为所求;(2)如图所示,矩形ABCD即为所求.20.(2022•婺城区校级模拟)如图,在4×4的方格中,点A,B,C为格点,利用无刻度的直尺画出满足以下条件的图形(保留必要的辅助线).(1)在图1中画△ABC的中线BE.(2)在图2中标注△ABC的外心O并画出其外接圆的切线CP.【分析】(1)根据中线的定义作图;(2)根据三角形的外心的定义和切线的判定定理作图.【解答】解:(1)如图所示,BE即为所求的△ABC的中线;(2)如图所示,点O即为所求的△ABC的外心,PC即为所求的外接圆的切线.21.(2022•海陵区校级三模)如图(1)(2),在每个小正方形的边长为1的网格中,△ABC的顶点A,B,C均落在格点上,以AB为直径的半圆的圆心为O,请用无刻度的直尺,在如图(1)图(2)所示的网格中,在半圆O上画出点P,连接AP,使AP平分∠CAB.【分析】如图(1)中,取格点T,连接OT交⊙O于点P,连接AP,点P即为所求.如图(2)中取BC的中点J,连接OJ,延长OJ交⊙O于点P,连接AP,点P即为所求.【解答】解:如图(1)(2)中,点P即为所求.22.(2022•吉安模拟)如图,在正方形网格中,△ABC的顶点在格点(网格线的交点)上,请仅用无刻度直尺完成以下作图.(保留作图痕迹)(1)在图1中作△ABC的重心.(2)在图2中作∠AGB=∠ACB,且G是格点.【分析】(1)根据重心是三角形的中线的交点,画出图形即可;(2)利用圆周角定理,画出图形即可.【解答】解:(1)如图1,点D即为所求作的的;(2)如图2,∠AG1B,∠AG2B,∠AG3B,∠AG4B即为所求作.23.(2022•绿园区校级模拟)如图①,②,③中每个小正方形的边长均为1.△ABC的顶点A,B均落在小正方形的顶点上,点C在小正方形的边上,以AC为直径的半圆的圆心为O.请用无刻度的直尺按要求画图.(1)如图①,在半圆上确定点D,使OD∥AB.(2)如图②,在线段AB的延长线上确定点E,使AE=AC.(3)如图③,在线段AC上确定点F,使AF=AB.【分析】(1)取B长度中点D,连接OD即可;(2)延长OD交⊙O于点J,连接CJ,延长CJ交AB的延长线于点E,点E即为所求;(3)在图②的基础上,连接AJ交BC于点K,连接EK,延长EK交AC于点F,点F即为所求.【解答】解:(1)如图①中,点D即为所求;(2)如图②中,点E即为所求;(3)如图③中,点F即为所求.24.(2022•南关区校级模拟)图①、图②、图③均是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,ABC的顶点均在格点上,只用无刻度的直尺,在给定的网格中,按下列要求作图.(不写作法,保留画图痕迹)(1)在图①中,在BC上画一点D,使S△ABD=S△ACD.(2)在图②中,在BC上画一点E,使S△ABE:S△ACE=2:3.(3)在图③中,在ABC内画一点F,使S△ACF:S△ABF:S△BCF=2:3:3.【分析】(1)取BC的中点D即可;(2)取格点M,N,连接MN交BC于点E,点E即为所求;(3)利用数形结合的思想,判断出点F到AC的距离为1,到AB的距离为,取格点P,Q,连接PQ交直线m于点F,点F即为所求.【解答】解:(1)在图①中,点D即为所求;(2)在图②中,点E即为所求;(3)在图③中,点F即为所求.25.(2022•长春模拟)图①、图②分别是10×8的网格,网格中每个小正方形的边长均为1,A、B两点在小正方形的格点上,请在图①、图②中各取一点(点C必须在小正方形的格点上),使以A、B、C为顶点的三角形分别满足下列要求.(1)在图①中画一个△ABC,使∠ACB=90°,面积为5;(2)在图②中画一个△ABC,使BA=BC,∠ABC为钝角,并求△ABC的周长.【分析】(1)根据要求作出图形即可;(2)利用数形结合的思想作出图形,利用勾股定理求出AC,可得结论.【解答】解:(1)如图①中,△ABC即为所求;(2)如图②中,△ABC即为所求.∵AB=BC=5,AC==4,∴△ABC的周长为10+4.26.(2022•二道区校级二模)图①、图②、图③均是6×6的正方形网格,每个小正方形的边长为1,每个小正方形的顶点称为格点,线段AB、EF、MN的端点均在格点上,只用无刻度的直尺,在给定的网格中,按下列要求画图.(1)在图①中,画∠ADB=45°;(2)在图②中,画∠APB=45°,且点P在线段EF上;(3)在图③中,画∠AQB=45°,且点Q在线段MN上.【分析】(1)构造等腰直角三角形,可得结论;(2)构造等腰直角三角形,可得结论;(3)取格点R,T,连接RT交MN于点Q,连接QB,QA,点Q即为所求.【解答】解:(1)如图①中,点D即为所求;(2)如图②中,点P即为所求;(3)如图③中,点Q即为所求.27.(2022•香坊区校级三模)如图1、2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)在图1中画出以AC为底边的等腰直角三角形ABC,点B在小正方顶点上;(2)在图2中画出以AC为腰的等腰三角形ACD,点D在小正方形的顶点上,且△ACD的面积为8,并直接写出tanA的值.【分析】(1)根据等腰直角三角形的定义画出图形即可;(2)利用数形结合的思想作出图形即可.【解答】解:(1)如图1中,△ABC即为所求;(2)如图2中,△ADC即为所求,tanA==2.28.(2022•瑞安市校级三模)如图是由边长为1的小正六边形构成的网格图,网格上的点称为格点.已知格点线段AB,利用网格图,仅用无刻度的直尺来完成下面几何作图.(1)请在图①中作一个格点等腰三角形△ABC;(2)请在图②在线段AB上求作点P,使得AP:BP=3:4.(要求:不写作法但保留作图痕迹)【分析】(1)画出如图中所示的线段AC,再连接BC即可;(2)如图②,作△ADP∽△BCP即可得出结论.【解答】解:(1)如图所示,△ABC即为所求作的等腰三角形:(2)如图②,点P即为所求作;29.(2022•江夏区模拟)用无刻度直尺作图:(1)如图1,在AB上作点E,使∠ACE=45°;(2)如图1,点F为AC与网格的交点,在AB上作点D,使∠ADF=∠ACB;(3)如图2,在AB上作点N,使=.(4)如图2,在AB上作点M,使∠ACM=∠ABC.【分析】(1)取格点Q,连接CQ交AB于点E,点E即为所求;(2)取AQ是中点P,连接FP交AB于点D,点D即为所求;(3)利用网格特征作出点N即可;(4)把∠ABC考查45°+∠CBK,∠ACE=45°,∠ECF=∠CBK,可得结论.【解答】解:(1)如图1中,点E即为所求;(2)如图1中,点D即为所求;(3)如图2中,点N即为所求;(4)如图2中,点M即为所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 期货市场品牌建设与维护服务考核试卷
- 木材加工行业人才培养计划考核试卷
- 摄影器材行业市场动态监测与竞争情报分析考核试卷
- 办公室员工职业发展与培训体系建设案例考核试卷
- 天然气开采项目财务管理与成本控制考核试卷
- 固体饮料的无添加与天然成分趋势考核试卷
- 木材贸易风险管理与防范考核试卷
- 搪瓷卫生洁具的顾客满意度调查考核试卷
- 放射性金属矿选矿实验方法与技术考核试卷
- 钢板出售转让合同范本
- 金庸人物课件
- 再生资源门店加盟协议书
- 疗愈珠宝的科学与艺术
- 新能源汽车车位租赁合同
- 《人工智能导论》(第2版)高职全套教学课件
- 39 《出师表》对比阅读-2024-2025中考语文文言文阅读专项训练(含答案)
- 院前急救技术-止血包扎固定搬运课件
- 中国煤炭地质总局公开招聘报名表
- 电子商务数据分析基础(第二版) 课件 模块1、2 电子商务数据分析概述、基础数据采集
- YB-T+4190-2018工程用机编钢丝网及组合体
- 高大模板安全施工施工安全保证措施
评论
0/150
提交评论