2024年浙江省金华市义乌市宾王中学数学九年级第一学期开学学业水平测试试题【含答案】_第1页
2024年浙江省金华市义乌市宾王中学数学九年级第一学期开学学业水平测试试题【含答案】_第2页
2024年浙江省金华市义乌市宾王中学数学九年级第一学期开学学业水平测试试题【含答案】_第3页
2024年浙江省金华市义乌市宾王中学数学九年级第一学期开学学业水平测试试题【含答案】_第4页
2024年浙江省金华市义乌市宾王中学数学九年级第一学期开学学业水平测试试题【含答案】_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共6页2024年浙江省金华市义乌市宾王中学数学九年级第一学期开学学业水平测试试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在平行四边形ABCD中,BD为对角线,点E、O、F分别是

AB、BD、BC的中点,且,,则平行四边形ABCD的周长为A.10 B.12 C.15 D.202、(4分)函数y=x+1中自变量x的取值范围是()A.x≥﹣1

B.x≤﹣1

C.x>﹣1

D.x<﹣13、(4分)如图所示,购买一种苹果,所付款金额(单元:元)与购买量(单位:千克)之间的函数图像由线段和射线组成,则一次购买千克这种苹果,比分五次购买,每次购买千克这种苹果可节省()A.元 B.元 C.元 D.元4、(4分)目前我国已建立了比较完善的经济困难学生资助体系,某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元.设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A.438(1+x)2=389 B.389(1+x)2=438C.389(1+2x)=438 D.438(1+2x)=3895、(4分)下列图形中,可以抽象为中心对称图形的是()A. B.C. D.6、(4分)实数a在数轴上的位置如图所示,则化简后为()A.8 B.﹣8 C.2a﹣18 D.无法确定7、(4分)一次函数ymx的图像过点(0,2),且y随x的增大而增大,则m的值为()A.1 B.3 C.1 D.1或38、(4分)若一个等腰直角三角形的面积为8,则这个等腰三角形的直角边长为()A.2 B.4 C.4 D.8二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)在平面直角坐标系中,已知一次函数的图像经过,两点,若,则.(填”>”,”<”或”=”)10、(4分)不等式9﹣3x>0的非负整数解的和是_____.11、(4分)八年级(1)班四个绿化小组植树的棵数如下:8,8,10,x.已知这组数据的众数和平均数相等,那么这组数据的方差是_____.12、(4分)已知一个反比例函数的图象与正比例函数的图象有交点,请写出一个满足上述条件的反比例函数的表达式:__________________.13、(4分)三角形的各边分别为8cm、10cm和12cm,连结各边中点所成三角形的周长=_____三、解答题(本大题共5个小题,共48分)14、(12分)在⊿ABC中,AB=17cm,BC=16cm,,BC边上的中线AD=15cm,问⊿ABC是什么形状的三角形?并说明你的理由.15、(8分)如图,一次函数y=kx+b的图象为直线l1,经过A(0,4)和D(4,0)两点;一次函数y=x+1的图象为直线l2,与x轴交于点C;两直线l1,l2相交于点B.(1)求k、b的值;(2)求点B的坐标;(3)求△ABC的面积.16、(8分)先化简,再求值:÷(x﹣),其中x=﹣1.17、(10分)如图,已知直线与直线相交于点.(1)求、的值;(2)请结合图象直接写出不等式的解集.18、(10分)某文具商店的某种毛笔每支售价25元,书法练习本每本售价5元,该商店为促销正在进行优惠活动:活动1:买一支毛笔送一本书法练习本;活动2:按购买金额的九折付款.某学校准备为书法兴趣小组购买这种毛笔20支,书法练习本x(x≥20)本.(1)写出两种优惠活动实际付款金额y1(元),y2(元)与x(本)之间的函数关系式;(2)请问:该校选择哪种优惠活动更合算?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)将5个边长为1的正方形按照如图所示方式摆放,O1,O2,O3,O4,O5是正方形对角线的交点,那么阴影部分面积之和等于________.20、(4分)函数y=与y=k2x(k1,k2均是不为0的常数)的图象相交于A、B两点,若点A的坐标是(1,2),则点B的坐标是______.21、(4分)有一个质地均匀的正方体,其六个面上分别写着直角梯形、等腰梯形、矩形、正方形、菱形、平行四边形,投掷这个正方体后,向上的一面的图形是对角线相等的图形的概率是_______;22、(4分)一组数据7,5,4,5,9的方差是______.23、(4分)当x=______时,分式的值为0.二、解答题(本大题共3个小题,共30分)24、(8分)某公司对应聘者A,B,进行面试,并按三个方面给应聘者打分,每方面满分20分,最后打分结果如下表,专业知识工作经验仪表形象A141812B181611根据实际需要,公司将专业知识、工作经验和仪表形象三项成绩得分按6:3:1的比例确定各人的成绩,此时谁将被录用?25、(10分)在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足S矩形ABCD=3S△PAB,则PA+PB的最小值为_____.26、(12分)如图,分别以的边向外作正方形ABFG和ACDE,连接EG,若O为EG的中点,求证:(1);(2).

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】

由于点E、O、F分别是

AB、BD、BC的中点,根据三角形的中位线性质可得:AD=2OE=6,CD=2OF=4,再根据平行四边形周长公式计算即可.【详解】因为点E,O,F分别是

AB,BD,BC的中点,所以OE是△ABD的中位线,OF是△DBC中位线,所以AD=2OE=6,CD=2OF=4,所以平行四边形的周长等于=,故选D.本题主要考查三角形的中位线性质,解决本题的关键是要熟练掌握三角形中位线的性质.2、A【解析】

根据被开方数大于等于0列式计算即可得解.【详解】解:由题意得,x+1⩾0,解得x⩾-1.故选:A.本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3、B【解析】

可由函数图像计算出2千克以内每千克的价钱,超出2千克后每千克的价钱,再分别计算出一次购买千克和分五次购买各自所付款金额.【详解】解:由图像可得2千克以内每千克的价钱为:(元),超出2千克后每千克的价钱为:(元),一次购买千克所付款金额为:(元),分五次购买所付款金额为:(元),可节省(元).本题考查了函数的图像,正确从函数图像获取信息是解题的关键.4、B【解析】

解:因为每半年发放的资助金额的平均增长率为x,去年上半年发放给每个经济困难学生389元,去年下半年发放给每个经济困难学生389(1+x)元,则今年上半年发放给每个经济困难学生389(1+x)(1+x)=389(1+x)2元.据此,由题设今年上半年发放了1元,列出方程:389(1+x)2=1.故选B.5、B【解析】

根据中心对称图形的概念求解.【详解】A.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;B.是中心对称图形,故此选项正确;C.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;D.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误。故选:B.此题考查中心对称图形,难度不大.6、A【解析】

先依据a在数轴上的位置确定出a﹣5、a﹣13的正负,然后再依据二次根式的性质、绝对值的性质进行化简即可.【详解】由题意可知6<a<12,∴a﹣5>0、a﹣13<0,∴+=|a﹣5|+|a﹣13|=a﹣5+13﹣a=1.故选A.本题主要考查的是二次根式的性质与化简,熟练掌握二次根式的性质是解题的关键.7、B【解析】

先根据函数的增减性判断出m的符号,再把点(1,2)代入求出m的值即可.【详解】∵一次函数y=mx+|m-1|中y随x的增大而增大,∴m>1.∵一次函数y=mx+|m-1|的图象过点(1,2),∴当x=1时,|m-1|=2,解得m1=3,m2=-1<1(舍去).故选B.本题考查的是一次函数图象上点的坐标特点及一次函数的性质,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.8、C【解析】设等腰直角三角形的直角边长为x,根据面积为8,可列方程求解.解;设等腰直角三角形的边长为x,

x2=8,

x=1或x=-1(舍去).

所以它的直角边长为1.

故选C.“点睛”本题考查等腰直角三角形的性质,等腰直角三角形的两个腰相等,两腰夹角为90°,根据面积为8可列方程求解.二、填空题(本大题共5个小题,每小题4分,共20分)9、.【解析】试题分析:一次函数的增减性有两种情况:①当时,函数的值随x的值增大而增大;②当时,函数y的值随x的值增大而减小.由题意得,函数的,故y的值随x的值增大而增大.∵,∴.考点:一次函数图象与系数的关系.10、1【解析】

先根据不等式的性质求出不等式的解集,再找出不等式的非负整数解相加即可.【详解】所以不等式的非负整数解为0,1,2则所求的和为故答案为:1.本题考查了求一元一次不等式的整数解,掌握不等式的解法是解题关键.11、1.【解析】

根据题意先确定x的值,再根据方差公式进行计算即可.【详解】解:当x=10时,有两个众数,而平均数只有一个,不合题意舍去.当众数为8时,根据题意得,解得x=6,则这组数据的方差是:.故答案为1.本题考查了数据的收集和处理,主要考查了众数、平均数和方差的知识,解题时需要理解题意,分类讨论.12、【解析】

写一个经过一、三象限的反比例函数即可.【详解】反比例函数与有交点.故答案为:.本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.13、15cm【解析】

由中点和中位线定义可得新三角形的各边长为原三角形各边长的一半,即可求其周长.【详解】如图,D,E,F分别是△ABC的三边的中点,

则DE=AC,DF=BC,EF=AB,

∴△DEF的周长=DE+DF+EF=(AC+BC+AB)=×(8+10+12)cm=15cm,

故答案为15cm.本题考查三角形中位线定理,解题的关键是掌握三角形中位线定理.三、解答题(本大题共5个小题,共48分)14、等腰直角三角形,理由见解析.【解析】试题分析:先根据AD是BD上的中线求出BD的长,再根据勾股定理的逆定理判断出△ABD的形状,进而可得出∠ADC=90°,根据勾股定理即可求出AC的长,进而得出结论.试题解析:△ABC是等腰三角形,∵AD是BC边的中线,BC=16cm,∴BD=DC=8cm,∵AD²+BD²=15²+8²=17²=AB²,∴∠ADB=90°,∴∠ADC=90°,在Rt△ADC中,AC==17cm.∴AC=AB,即△ABC是等腰三角形.点睛:本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.15、(1)k=-1,b=4;(2)B(,);(3)△ABC的面积为3.75.【解析】

(1)将A点和D点的坐标代入到一次函数的一般形式,求得k、b的值即可;

(2)两函数联立组成方程组求得方程组的解后即可求得点B的坐标;

(3)首先求得点C的坐标,然后利用S△ABC=S△ACD-S△BCD求解即可.【详解】解:(1)把A(0,4)和D(4,0)代入y=kx+b得:解得;(2)由(1)得y=-x+4,联立解得,所以B(,);(3)由y=x+1,当y=0时,x+1=0,解得x=-1,

所以点C(-1,0)

所以S△ABC=S△ACD-S△BCD=×5×4-×5×=3.75;本题考查两条直线平行或相交的问题,求两条直线的交点坐标时通常联立后组成方程组求解.16、,-2.【解析】

首先将括号里面通分,再将分子与分母分解因式进而化简得出答案.【详解】,===,当x=﹣2时,原式==﹣2.此题主要考查了分式的化简求值,正确分解因式是解题关键.17、(1),;(2).【解析】

(1)把点P的坐标分别代入l1与l2的函数关系式,解方程即可;(2)利用函数图象,写出直线在直线的上方所对应的自变量的范围即可.【详解】解:(1)因为点P是两条直线的交点,所以把点分别代入与中,得,,解得,.(2)当时,的图象在的上面,所以,不等式的解集是.本题考查了一次函数的交点问题和一次函数与一元一次不等式的关系,读懂图象,弄清一次函数图象的交点与解析式的关系和一次函数与一元一次不等式的关系是解题的关键.18、(1),;(1)买10支毛笔选择活动1,赠送10本练习本,剩下(x-10)本练习本选择活动1.【解析】

(1)活动1:10支毛笔的付款金额,加上(x-10)本练习本的付款金额即可;活动1:将10支毛笔和x本练习本的总金额乘以0.9即可.(1)可以任意选择一个优惠活动,也可两个活动同时选择,三种方案进行对比即可.【详解】(1)(1)第三种方案:买10支毛笔选择活动1,赠送10本练习本,剩下(x-10)本练习本选择活动1,此时实际付款金额显然令,得解得因此当时,最优惠的购买方案为:买10支毛笔选择活动1,赠送10本练习本,剩下(x-10)本练习本选择活动1.本题考查一次函数的应用,理解两种优惠活动的付款金额计算方式是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、1.【解析】分析:连接O1A,O1B,先证明△AO1C≌△BO1D,从而可得S四边形ACO1D=S△AO1B=S正方形ABEF=,然后可求阴影部分面积之和.详解:如图,连接O1A,O1B.∵四边形ABEF是正方形,∴O1A=O1B,∠AO1B=90°.∵∠AO1C+∠AO1D=90°,∠BO1D+∠AO1D=90°,∴∠AO1C=∠BO1D.在△AO1C和△BO1D中,∵∠AO1C=∠BO1D,O1A=O1B,∠O1AC=∠O1BD=45°,∴△AO1C≌△BO1D,∴S四边形ACO1D=S△AO1B=S正方形ABEF=,∴阴影部分面积之和等于×4=1.故答案为:1.点睛:本题考查了正方形的性质,全等三角形的判定与性质,证明△AO1C≌△BO1D是解答本题的关键.20、(-1,-2)【解析】

根据函数图象的中心对称性,由一个交点坐标,得出另一个交点坐标,“关于原点对称的两个的纵横坐标都是互为相反数”这一结论得出答案.【详解】∵正比例函数y=k2x与反比例函数数y=的图象都是以原点为对称中心的中心对称图形,∴他们的交点A与点B也关于原点对称,∵A(1,2)∴B(-1,-2)故答案为:(-1,-2)考查正比例函数、反比例函数的图象和性质,得出点A和点B关于原点对称是解决问题的关键,掌握“关于原点对称的两个的纵横坐标都是互为相反数”是前提.21、【解析】【分析】先求出总的情况和对角线相等的情况,再根据概率公式可求得.【详解】因为,出现的图形共有6种情况,对角线相等的有(等腰梯形,正方形,矩形)3这情况,所以,P(对角线相等)=故答案为:【点睛】本题考核知识点:概率.解题关键点:掌握概率的求法.22、【解析】

结合方差公式先求出这组数据的平均数,然后代入公式求出即可.【详解】解:这组数据的平均数为,这组数据的方差为.故答案为:.此题主要考查了方差的有关知识,正确的求出平均数,并正确代入方差公式是解决问题的关键.23、1.【解析】

直接利用分式的值为零则分子为零,分母不为零进而得出答案.【详解】解:∵分式的值为0,

∴1x-4=0且x-1≠0,

解得:x=1.

故答案为:1.本题考查分式的值为零的条件,正确把握分式的定义是解题关键.二、解答题(本大题共3个小题,共30分)24、B应被录用【解析】

根据加权平均数计算A,B两名应聘者的最后得分,看谁的分数高,分数高的就录用.【详解】解:∵6:3:1=60%:30%:10%,∴A的最后得分为,B的最后得分为,∵16.7>15,∴B应被录用.本题考查了加权平均数的概念,在本题中专业知识、工作经验、仪表形象的权重不同,因而不能简单地平均,而应将各人的各项成绩乘以权之后才能求出最后的得分.25、4【解析】

首先由S矩形ABCD=3S△PAB,得出动点P在与AB平行且与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.【详解】设△ABP中AB边上的高是h.∵S矩形ABCD=3S△PAB,∴AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论