版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省重点中学2023-2024学年高三考前演练卷(三)数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设点,P为曲线上动点,若点A,P间距离的最小值为,则实数t的值为()A. B. C. D.2.已知实数,满足约束条件,则的取值范围是()A. B. C. D.3.设,且,则()A. B. C. D.4.如图,某几何体的三视图是由三个边长为2的正方形和其内部的一些虚线构成的,则该几何体的体积为()A. B. C.6 D.与点O的位置有关5.已知平面向量,满足,,且,则()A.3 B. C. D.56.设复数满足,则()A.1 B.-1 C. D.7.已知函数,若时,恒成立,则实数的值为()A. B. C. D.8.设分别为的三边的中点,则()A. B. C. D.9.已知等差数列的前项和为,且,则()A.45 B.42 C.25 D.3610.已知向量满足,且与的夹角为,则()A. B. C. D.11.函数在区间上的大致图象如图所示,则可能是()A.B.C.D.12.如图,在平面四边形中,满足,且,沿着把折起,使点到达点的位置,且使,则三棱锥体积的最大值为()A.12 B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中二项式系数最大的项的系数为_________(用数字作答).14.的展开式中常数项是___________.15.已知函数的最小值为2,则_________.16.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入袋或袋中.己知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是,则小球落入袋中的概率为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设等差数列的首项为0,公差为a,;等差数列的首项为0,公差为b,.由数列和构造数表M,与数表;记数表M中位于第i行第j列的元素为,其中,(i,j=1,2,3,…).记数表中位于第i行第j列的元素为,其中(,,).如:,.(1)设,,请计算,,;(2)设,,试求,的表达式(用i,j表示),并证明:对于整数t,若t不属于数表M,则t属于数表;(3)设,,对于整数t,t不属于数表M,求t的最大值.18.(12分)已知在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.(1)求曲线与直线的直角坐标方程;(2)若曲线与直线交于两点,求的值.19.(12分)已知,如图,曲线由曲线:和曲线:组成,其中点为曲线所在圆锥曲线的焦点,点为曲线所在圆锥曲线的焦点.(Ⅰ)若,求曲线的方程;(Ⅱ)如图,作直线平行于曲线的渐近线,交曲线于点,求证:弦的中点必在曲线的另一条渐近线上;(Ⅲ)对于(Ⅰ)中的曲线,若直线过点交曲线于点,求面积的最大值.20.(12分)已知抛物线和圆,倾斜角为45°的直线过抛物线的焦点,且与圆相切.(1)求的值;(2)动点在抛物线的准线上,动点在上,若在点处的切线交轴于点,设.求证点在定直线上,并求该定直线的方程.21.(12分)已知函数.(1)当时,求的单调区间;(2)若函数有两个极值点,,且,为的导函数,设,求的取值范围,并求取到最小值时所对应的的值.22.(10分)某艺术品公司欲生产一款迎新春工艺礼品,该礼品是由玻璃球面和该球的内接圆锥组成,圆锥的侧面用于艺术装饰,如图1.为了便于设计,可将该礼品看成是由圆及其内接等腰三角形绕底边上的高所在直线旋转180°而成,如图2.已知圆的半径为,设,圆锥的侧面积为.(1)求关于的函数关系式;(2)为了达到最佳观赏效果,要求圆锥的侧面积最大.求取得最大值时腰的长度.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
设,求,作为的函数,其最小值是6,利用导数知识求的最小值.【详解】设,则,记,,易知是增函数,且的值域是,∴的唯一解,且时,,时,,即,由题意,而,,∴,解得,.∴.故选:C.【点睛】本题考查导数的应用,考查用导数求最值.解题时对和的关系的处理是解题关键.2、B【解析】
画出可行域,根据可行域上的点到原点距离,求得的取值范围.【详解】由约束条件作出可行域是由,,三点所围成的三角形及其内部,如图中阴影部分,而可理解为可行域内的点到原点距离的平方,显然原点到所在的直线的距离是可行域内的点到原点距离的最小值,此时,点到原点的距离是可行域内的点到原点距离的最大值,此时.所以的取值范围是.故选:B【点睛】本小题考查线性规划,两点间距离公式等基础知识;考查运算求解能力,数形结合思想,应用意识.3、C【解析】
将等式变形后,利用二次根式的性质判断出,即可求出的范围.【详解】即故选:C【点睛】此题考查解三角函数方程,恒等变化后根据的关系即可求解,属于简单题目.4、B【解析】
根据三视图还原直观图如下图所示,几何体的体积为正方体的体积减去四棱锥的体积,即可求出结论.【详解】如下图是还原后的几何体,是由棱长为2的正方体挖去一个四棱锥构成的,正方体的体积为8,四棱锥的底面是边长为2的正方形,顶点O在平面上,高为2,所以四棱锥的体积为,所以该几何体的体积为.故选:B.【点睛】本题考查三视图求几何体的体积,还原几何体的直观图是解题的关键,属于基础题.5、B【解析】
先求出,再利用求出,再求.【详解】解:由,所以,,,故选:B【点睛】考查向量的数量积及向量模的运算,是基础题.6、B【解析】
利用复数的四则运算即可求解.【详解】由.故选:B【点睛】本题考查了复数的四则运算,需掌握复数的运算法则,属于基础题.7、D【解析】
通过分析函数与的图象,得到两函数必须有相同的零点,解方程组即得解.【详解】如图所示,函数与的图象,因为时,恒成立,于是两函数必须有相同的零点,所以,解得.故选:D【点睛】本题主要考查函数的图象的综合应用和函数的零点问题,考查不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平.8、B【解析】
根据题意,画出几何图形,根据向量加法的线性运算即可求解.【详解】根据题意,可得几何关系如下图所示:,故选:B【点睛】本题考查了向量加法的线性运算,属于基础题.9、D【解析】
由等差数列的性质可知,进而代入等差数列的前项和的公式即可.【详解】由题,.故选:D【点睛】本题考查等差数列的性质,考查等差数列的前项和.10、A【解析】
根据向量的运算法则展开后利用数量积的性质即可.【详解】.故选:A.【点睛】本题主要考查数量积的运算,属于基础题.11、B【解析】
根据特殊值及函数的单调性判断即可;【详解】解:当时,,无意义,故排除A;又,则,故排除D;对于C,当时,,所以不单调,故排除C;故选:B【点睛】本题考查根据函数图象选择函数解析式,这类问题利用特殊值与排除法是最佳选择,属于基础题.12、C【解析】
过作于,连接,易知,,从而可证平面,进而可知,当最大时,取得最大值,取的中点,可得,再由,求出的最大值即可.【详解】在和中,,所以,则,过作于,连接,显然,则,且,又因为,所以平面,所以,当最大时,取得最大值,取的中点,则,所以,因为,所以点在以为焦点的椭圆上(不在左右顶点),其中长轴长为10,焦距长为8,所以的最大值为椭圆的短轴长的一半,故最大值为,所以最大值为,故的最大值为.故选:C.【点睛】本题考查三棱锥体积的最大值,考查学生的空间想象能力与计算求解能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、5670【解析】
根据二项式展开的通项,可得二项式系数的最大项,可求得其系数.【详解】二项展开式一共有项,所以由二项式系数的性质可知二项式系数最大的项为第5项,系数为.故答案为:5670【点睛】本题考查了二项式定理展开式的应用,由通项公式求二项式系数,属于中档题.14、-160【解析】试题分析:常数项为.考点:二项展开式系数问题.15、【解析】
首先利用绝对值的意义去掉绝对值符号,之后再结合后边的函数解析式,对照函数值等于2的时候对应的自变量的值,从而得到分段函数的分界点,从而得到相应的等量关系式,求得参数的值.【详解】根据题意可知,可以发现当或时是分界点,结合函数的解析式,可以判断0不可能,所以只能是是分界点,故,解得,故答案是.【点睛】本题主要考查分段函数的性质,二次函数的性质,函数最值的求解等知识,意在考查学生的转化能力和计算求解能力.16、【解析】记小球落入袋中的概率,则,又小球每次遇到黑色障碍物时一直向左或者一直向右下落,小球将落入袋,所以有,则.故本题应填.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)详见解析(3)29【解析】
(1)将,代入,可求出,,可代入求,,可求结果.(2)可求,,通过反证法证明,(3)可推出,,的最大值,就是集合中元素的最大值,求出.【详解】(1)由题意知等差数列的通项公式为:;等差数列的通项公式为:,得,则,,得,故.(2)证明:已知.,由题意知等差数列的通项公式为:;等差数列的通项公式为:,得,,.得,,,.所以若,则存在,,使,若,则存在,,,使,因此,对于正整数,考虑集合,,,即,,,,,,.下面证明:集合中至少有一元素是7的倍数.反证法:假设集合中任何一个元素,都不是7的倍数,则集合中每一元素关于7的余数可以为1,2,3,4,5,6,又因为集合中共有7个元素,所以集合中至少存在两个元素关于7的余数相同,不妨设为,,其中,,.则这两个元素的差为7的倍数,即,所以,与矛盾,所以假设不成立,即原命题成立.即集合中至少有一元素是7的倍数,不妨设该元素为,,,则存在,使,,,即,,,由已证可知,若,则存在,,使,而,所以为负整数,设,则,且,,,,所以,当,时,对于整数,若,则成立.(3)下面用反证法证明:若对于整数,,则,假设命题不成立,即,且.则对于整数,存在,,,,,使成立,整理,得,又因为,,所以且是7的倍数,因为,,所以,所以矛盾,即假设不成立.所以对于整数,若,则,又由第二问,对于整数,则,所以的最大值,就是集合中元素的最大值,又因为,,,,所以.【点睛】本题考查数列的综合应用,以及反证法,求最值,属于难题.18、(1)曲线的直角坐标方程为;直线的直角坐标方程为(2)【解析】
(1)由公式可化极坐标方程为直角坐标方程,消参法可化参数方程为普通方程;(2)联立两曲线方程,解方程组得两交点坐标,从而得两点间距离.【详解】解:(1)曲线的直角坐标方程为直线的直角坐标方程为(2)据解,得或【点睛】本题考查极坐标与直角坐标的互化,考查参数方程与普通方程的互化,属于基础题.19、(Ⅰ)和.;(Ⅱ)证明见解析;(Ⅲ).【解析】
(Ⅰ)由,可得,解出即可;(Ⅱ)设点,设直线,与椭圆方程联立可得:,利用,根与系数的关系、中点坐标公式,证明即可;(Ⅲ)由(Ⅰ)知,曲线,且,设直线的方程为:,与椭圆方程联立可得:,利用根与系数的关系、弦长公式、三角形的面釈计算公式、基本不等式的性质,即可求解.【详解】(Ⅰ)由题意:,,解得,则曲线的方程为:和.(Ⅱ)证明:由题意曲线的渐近线为:,设直线,则联立,得,,解得:,又由数形结合知.设点,则,,,,,即点在直线上.(Ⅲ)由(Ⅰ)知,曲线,点,设直线的方程为:,联立,得:,,设,,,,面积,令,,当且仅当,即时等号成立,所以面积的最大值为.【点睛】本题考查了椭圆与双曲线的标准方程及其性质、直线与椭圆的相交问题、弦长公式、三角形的面积计算公式、基本不等式的性质,考查了推理论证能力与运算求解能力,属于难题.20、(1);(2)点在定直线上.【解析】
(1)设出直线的方程为,由直线和圆相切的条件:,解得;(2)设出,运用导数求得切线的斜率,求得为切点的切线方程,再由向量的坐标表示,可得在定直线上;【详解】解:(1)依题意设直线的方程为,由已知得:圆的圆心,半径,因为直线与圆相切,所以圆心到直线的距离,即,解得或(舍去).所以;(2)依题意设,由(1)知抛物线方程为,所以,所以,设,则以为切点的切线的斜率为,所以切线的方程为.令,,即交轴于点坐标为,所以,,,.设点坐标为,则,所以点在定直线上.【点睛】本题考查抛物线的方程和性质,直线与圆的位置关系的判断,考查直线方程和圆方程的运用,以及切线方程的求法,考查化简整理的运算能力,属于综合题.21、(1)单调递增区间为,单调递减区间为(2)的取值范围是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 感悟教育教学心得体会
- 预防毒蘑菇食品安全教育
- 小班水果主题教案
- 医院办公室月度工作总结
- 疫情期幼儿园晨午检管理制度3篇
- 羽毛球比赛总结集锦15篇
- 教师节领导讲话稿(13篇)
- 社区个人述职报告合集15篇
- 生产实习报告范文合集7篇
- 安全生产月领导讲话稿集合7篇
- 跨学科实践活动5基于碳中和理念设计低碳行动方案九年级化学人教版上册
- 【MOOC】概率论与数理统计-重庆大学 中国大学慕课MOOC答案
- 车位租赁合同标准版可打印
- 机械工程技术训练(北京航空航天大学)知到智慧树章节答案
- 生活垃圾发电企业安全生产双体系
- 【初中化学】二氧化碳的实验室制取课件-2024-2025学年九年级化学人教版上册
- 2024年高考真题-政治(江苏卷) 含答案
- 外研版三年级起点五年级上册英语集体备课教案
- 电子竞技赛事裁判员培训教程
- 湖南省2024年普通高中学业水平合格性模拟考试数学仿真卷(六)
- 新课标背景下“教学评一体化”评的策略
评论
0/150
提交评论