2024年四川省南充市高坪区会龙初级中学数学九年级第一学期开学考试模拟试题【含答案】_第1页
2024年四川省南充市高坪区会龙初级中学数学九年级第一学期开学考试模拟试题【含答案】_第2页
2024年四川省南充市高坪区会龙初级中学数学九年级第一学期开学考试模拟试题【含答案】_第3页
2024年四川省南充市高坪区会龙初级中学数学九年级第一学期开学考试模拟试题【含答案】_第4页
2024年四川省南充市高坪区会龙初级中学数学九年级第一学期开学考试模拟试题【含答案】_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共5页2024年四川省南充市高坪区会龙初级中学数学九年级第一学期开学考试模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们的平均亩产量分别是=610千克,=608千克,亩产量的方差分别是="29."6,="2."7.则关于两种小麦推广种植的合理决策是()A.甲的平均亩产量较高,应推广甲B.甲、乙的平均亩产量相差不多,均可推广C.甲的平均亩产量较高,且亩产量比较稳定,应推广甲D.甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙2、(4分)如图,等边三角形的边长为4,点是△ABC的中心,,的两边与分别相交于,绕点顺时针旋转时,下列四个结论正确的个数是()①;②;③;④周长最小值是9.A.1个 B.2个 C.3个 D.4个3、(4分)如图,直线y=3x+6与x,y轴分别交于点A,B,以OB为底边在y轴右侧作等腰△OBC,将点C向左平移5个单位,使其对应点C′恰好落在直线AB上,则点C的坐标为()A.(3,3) B.(4,3) C.(﹣1,3) D.(3,4)4、(4分)下列各数中比3大比4小的无理数是()A. B. C.3.1 D.5、(4分)已知二次函数y=2x2+8x-1的图象上有点A(-2,y1),B(-5,y2),C(-1,y3),则y1、y2、y3的大小关系为()A. B. C. D.6、(4分)矩形、菱形、正方形都具有的性质是()A.对角线相等 B.对角线互相平分 C.对角线互相垂直 D.对角线互相平分且相等7、(4分)在四边形中,,再补充一个条件使得四边形为菱形,这个条件可以是()A. B.C. D.与互相平分8、(4分)下列根式是最简二次根式的是()A.12 B.0.3 C.3 D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若是关于的方程的一个根,则方程的另一个根是_________.10、(4分)某物体对地面的压强随物体与地面的接触面积之间的变化关系如图所示(双曲线的一支).如果该物体与地面的接触面积为,那么该物体对地面的压强是__________.11、(4分)如图,梯形中,,点分别是的中点.已知两底之差是6,两腰之和是12,则的周长是____.12、(4分)将正比例函数的图象向上平移3个单位,所得的直线不经过第______象限.13、(4分)如图,已知△ABC是面积为4的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积等于___(结果保留根号).三、解答题(本大题共5个小题,共48分)14、(12分)某市教委为了让广大青少年学生走向操场、走进自然、走到阳光下,积极参加体育锻炼,启动了“学生阳光体育运动”,其中有一项是短跑运动,短跑运动可以锻炼人的灵活性,增强人的爆发力,因此张明和李亮在课外活动中报名参加了百米训练小组.在近几次百米训练中,教练对他们两人的测试成绩进行了统计和分析,请根据图表中的信息解答以下问题:成绩统计分析表(1)张明第2次的成绩为__________秒;(2)请补充完整上面的成绩统计分析表;(3)现在从张明和李亮中选择一名成绩优秀的去参加比赛,若你是他们的教练,应该选择谁?请说明理由.15、(8分)先化简,再求值:,其中,.16、(8分)在开展“好书伴我成长”读书活动中,某中学为了解八年级名学生的读书情况,随机调查了八年级名学生读书的册数,统计数据如下表所示.册数人数(1)求这个数据的平均数、众数和中位数.(2)根据这组数据,估计该校八年级名学生在本次活动中读书多于册的人数.17、(10分)已知在中,是边上的一点,的角平分线交于点,且,求证:.18、(10分)如图,菱形ABCD的边长为20cm,∠ABC=120°.动点P、Q同时从点A出发,其中P以4cm/s的速度,沿A→B→C的路线向点C运动;Q以2cm/s的速度,沿A→C的路线向点C运动.当P、Q到达终点C时,整个运动随之结束,设运动时间为t秒.(1)在点P、Q运动过程中,请判断PQ与对角线AC的位置关系,并说明理由;(2)若点Q关于菱形ABCD的对角线交点O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N.①当t为何值时,点P、M、N在一直线上?②当点P、M、N不在一直线上时,是否存在这样的t,使得△PMN是以PN为一直角边的直角三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)已知的面积为27,如果,,那么的周长为__________.20、(4分)在正方形ABCD中,对角线AC、BD相交于点O.如果AC=,那么正方形ABCD的面积是__________.21、(4分)如图,Rt△OAB的两直角边OA、OB分别在x轴和y轴上,,,将△OAB绕O点顺时针旋转90°得到△OCD,直线AC、BD交于点E.点M为直线BD上的动点,点N为x轴上的点,若以A,C,M,N四点为顶点的四边形是平行四边,则符合条件的点M的坐标为______.22、(4分)如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为______.23、(4分)计算:的结果是________.二、解答题(本大题共3个小题,共30分)24、(8分)ABCD中,过点D作DE⊥AB于点E,点F在CD上,DF=BE,连接BF,AF.(1)求证:四边形BFDE是矩形;(2)若AF平分∠BAD,且AE=3,DF=5,求矩形BFDE的面积.25、(10分)如图,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=CD,连接CF.(1)求证:△AEF≌△DEB;(2)若AB=AC,试判断四边形ADCF的形状,并证明你的结论.26、(12分)计算:(1)(2)(3)(4)

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】分析:本题需先根据甲、乙亩产量的平均数得出甲、乙的平均亩产量相差不多,再根据甲、乙的平均亩产量的方差即可得出乙的亩产量比较稳定,从而求出正确答案.解答:解:∵=610千克,=608千克,∴甲、乙的平均亩产量相差不多∵亩产量的方差分别是S2甲=29.6,S2乙=2.1.∴乙的亩产量比较稳定.故选D.2、B【解析】

首先连接OB、OC,如图,利用等边三角形的性质得∠ABO=∠OBC=∠OCB=30°,再证明∠BOD=∠COE,于是可判断△BOD≌△COE,利用全等三角形的对应边相等可对①进行判断;再利用S=S得到四边形ODBE的面积=S,则可对③进行判断,然后作OH⊥DE,则DH=EH,计算出S=OE,利用S△ODE随OE的变化而变化和四边形ODBE的面积为定值可对②进行判断,接下来由△BDE的周长=BC+DE=4+DE=4+OE,结合垂线段最短,当OE⊥BC时,OE最小,△BDE的周长最小,计算出此时OE的长则可对④进行判断.【详解】连接OB,OC,如图.∵△ABC为等边三角形,∴∠ABC=∠ACB=60°.∵点O是△ABC的中心,∴OB=OC,OB.OC分别平分∠ABC和∠ACB,∴∠ABO=∠OBC=∠OCB=30°,∴∠BOC=120°,即∠BOE+∠COE=120°,而∠DOE=120°,即∠BOE+∠BOD=120°,∴∠BOD=∠COE.在△BOD和△COE中,∠BOD=∠COE,BO=CO,∠OBD=∠OCE,∴△BOD≌△COE,∴BD=CE,OD=OE,所以①正确;∴S=S,∴四边形ODBE的面积=S=S=××4=,所以③正确;作OH⊥DE,如图,则DH=EH,∵∠DOE=120°,∴∠ODE=∠OEH=30°.∴OH=OE,HE=OH=OE,∴DE=OE,∴S△ODE=··OE·OE=OE,即S随OE的变化而变化,而四边形ODBE的面积为定值,∴S≠S,所以②错误;∵BD=CE,∴△BDE的周长=BD+BE+DE=CE+BE+DE=BC+DE=4+DE=4+OE,当OE⊥BC时,OE最小,△BDE的周长最小,此时OE=,∴△BDE周长的最小值=4+2=6,所以④错误.故选B.此题考查旋转的性质、等边三角形的性质和全等三角形的判定与性质,解题关键是牢记旋转前、后的图形全等.3、B【解析】令x=0,y=6,∴B(0,6),∵等腰△OBC,∴点C在线段OB的垂直平分线上,∴设C(a,3),则C'(a-5,3),∴3=3(a-5)+6,解得a=4,∴C(4,3).故选B.点睛:掌握等腰三角形的性质、函数图像的平移.4、A【解析】

由于带根号的要开不尽方是无理数,无限不循环小数为无理数,根据无理数的定义即可求解.【详解】∵四个选项中是无理数的只有和,而>4,3<<4,∴选项中比3大比4小的无理数只有.故选:A.此题主要考查了无理数的定义,解题时注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.5、C【解析】

先求出二次函数y=2x2+8x-2的图象的对称轴,然后判断出A(-2,y2),B(-5,y2),C(-2,y2)在抛物线上的位置,再求解.【详解】解:∵二次函数y=2x2+8x-2中a=2>0,

∴开口向上,对称轴为x==-2,

∵A(-2,y2)中x=-2,y2最小,∵B(-5,y2),∴点B关于对称轴的对称点B′横坐标是2,则有B′(2,y2),因为在对称轴得右侧,y随x得增大而增大,故y2>y2.

∴y2>y2>y2.

故选:C.本题考查二次函数图象上点的坐标特征,关键是掌握二次函数图象的性质.6、B【解析】

矩形、菱形、正方形都是特殊的平行四边形,因而平行四边形的性质就是四个图形都具有的性质.【详解】解:平行四边形的对角线互相平分,而对角线相等、平分一组对角、互相垂直不一定成立.

故平行四边形、矩形、菱形、正方形都具有的性质是:对角线互相平分.

故选:B.本题主要考查了正方形、矩形、菱形、平行四边形的性质,理解四个图形之间的关系是解题关键.7、D【解析】

由在四边形ABCD中,对角线AC,BD互相平分,可得四边形ABCD是平行四边形,又由对角线互相垂直的平行四边形是菱形,即可求得答案.【详解】解:∵在四边形ABCD中,对角线AC,BD互相平分,∴四边形ABCD是平行四边形,∵AC⊥BD,∴四边形ABCD是菱形,故选:D.此题考查了平行四边形的判定以及菱形的判定.此题比较简单,注意掌握对角线互相垂直的平行四边形是菱形定理的应用.8、C【解析】

根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式进行分析即可.【详解】A、12B、0.3=C、3是最简二次根式,故此选项正确;D、12=23故选:C.此题主要考查了最简二次根式,关键是掌握最简二次根式的条件.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】

设另一个根为y,利用两根之和,即可解决问题.【详解】解:设方程的另一个根为y,则y+=4,解得y=,即方程的另一个根为,故答案为:.题考查根与系数的关系、一元二次方程的应用等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10、500【解析】

首先通过反比例函数的定义计算出比例系数k的值,然后可确定其表达式,再根据题目中给出的自变量求出函数值【详解】根据图象可得当S=0.24时,P==500,即压强是500Pa.此题考查反比例函数的应用,列方程是解题关键11、1.【解析】

延长EF交BC于点H,可知EF,FH,FG、EG分别为△BDC、△ABC、△BDC和△ACD的中位线,由三角形中位线定理结合条件可求得EF+FG+EG,可求得答案.【详解】连接AE,并延长交CD于K,∵AB∥CD,∴∠BAE=∠DKE,∠ABD=∠EDK,∵点E、F、G分别是BD、AC、DC的中点.∴BE=DE,在△AEB和△KED中,,∴△AEB≌△KED(AAS),∴DK=AB,AE=EK,EF为△ACK的中位线,∴EF=CK=(DC-DK)=(DC-AB),∵EG为△BCD的中位线,∴EG=BC,又FG为△ACD的中位线,∴FG=AD,∴EG+GF=(AD+BC),∵两腰和是12,即AD+BC=12,两底差是6,即DC-AB=6,∴EG+GF=6,FE=3,∴△EFG的周长是6+3=1.故答案为:1.此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.12、三【解析】

根据函数的平移规律,一次函数的性质,可得答案.【详解】由正比例函数的图象向上平移3个单位,得,一次函数经过一二四象限,不经过三象限,故答案为:三.本题考查了一次函数图象与几何变换,利用函数的平移规律:上加下减,左加右减是解题关键.13、3-【解析】

根据相似三角形面积比等于相似比的平方求得三角形ADE的面积,然后求出其边长,过点F作FH⊥AE,过C作CM⊥AB,利用三角函数求出HF的值,即可得出三角形AFE的面积.【详解】解:作CM⊥AB于M,∵等边△ABC的面积是4,∴设BM=x,∴tan∠BCM=,∴BM=CM,∴×CM×AB=×2×CM2=4,∴CM=2,BM=2,∴AB=4,AD=AB=2,在△EAD中,作HF⊥AE交AE于H,则∠AFH=45°,∠EFH=30°,∴AH=HF,设AH=HF=x,则EH=xtan30°=x.又∵AH+EH=AE=AD=2,∴x+x=2,解得x=3-.∴S△AEF=×2×(3-)=3-.故答案为3-三、解答题(本大题共5个小题,共48分)14、(1)13.4;(2)13.3,13.3;(3)选择张明【解析】

根据折线统计图写出答案即可根据已知条件求得中位数及平均线即可,中数是按顺序排列的一组数据中居于中间位置的数,平均数是指在一组数据中所有数据之和再除以数据的个数.根据平均线一样,而张明的方差较稳定,所以选择张明.【详解】(1)根据折线统计图写出答案即可,即13.4;(2)中数是按顺序排列的一组数据中居于中间位置的数,即是13.3,平均数是指在一组数据中所有数据之和再除以数据的个数.即(13.2+13.4+13.1+13.5+13.3)5=13.3;(3)选择张明参加比赛.理由如下:因为张明和李亮成绩的平均数、中位数都相同,但张明成绩的方差小于李亮成绩的方差,张明的成绩较稳定,所以应该选择张明参加比赛.本题考查平均数、中位数和方差,熟练掌握计算法则和它们的性质是解题关键.15、;.【解析】

根据分式的减法和除法可以化简题目中的式子,然后将a、b的值代入化简后的式子即可解答本题.【详解】解:(-)÷====,当a=+,b=-时,原式===.本题考查分式的化简求值、分母有理化,解答本题的关键是明确分式化简求值的计算方法.16、(1)平均数为2;众数为3;中位数为2;(2)216人.【解析】

(1)根据平均数、众数、中位数的概念求解;(2)根据样本数据,估计本次活动中读书多于2册的人数.【详解】解:(1)由题意得,平均数为:,读书册数为3的人数最多,即众数为3,第25人和第26人读数厕所的平均值为中位数,及中位数为:,(2)(人.答:估计七年级读书多于2册的有216人.本题考查了众数、中位数、平均数的知识,掌握各知识点的概念是解答本题的关键.17、证明见解析.【解析】

根据角平分线的性质和外角等于不相邻两内角和即可求得∠ABD=∠C,可证明△ABD∽△ABC,即可解题.【详解】∵平分,∴,∵,∴,∵,,∴,∵,,∴,∴,即:,∵,∴.本题考查了相似三角形的判定,考查了相似三角形对应边比例相等的性质.18、(1)在点P、Q运动过程中,始终有PQ⊥AC;理由见解析;(1)①当t=时,点P、M、N在一直线上;②存在这样的t,故当t=1或时,存在以PN为一直角边的直角三角形.【解析】

(1)此问需分两种情况,当0<t≤5及5<t≤10两部分分别讨论得PQ⊥AC.(1)①由于点P、M、N在一直线上,则AQ+QM=AM,代入求得t的值.②假设存在这样的t,使得△PMN是以PN为一直角边的直角三角形,但是需分点N在AD上时和点N在CD上时两种情况分别讨论.【详解】解:(1)若0<t≤5,则AP=4t,AQ=1t.则==,又∵AO=10,AB=10,∴==.∴=.又∠CAB=30°,∴△APQ∽△ABO.∴∠AQP=90°,即PQ⊥AC.当5<t≤10时,同理,可由△PCQ∽△BCO得∠PQC=90°,即PQ⊥AC.∴在点P、Q运动过程中,始终有PQ⊥AC.(1)①如图,在Rt△APM中,∵∠PAM=30°,AP=4t,∴AM=.在△APQ中,∠AQP=90°,∴AQ=AP?cos30°=1t,∴QM=AC-1AQ=10-4t.由AQ+QM=AM得:1t+10-4t=,解得t=.∴当t=时,点P、M、N在一直线上.②存在这样的t,使△PMN是以PN为一直角边的直角三角形.设l交AC于H.如图1,当点N在AD上时,若PN⊥MN,则∠NMH=30°.∴MH=1NH.得10-4t-t=1×,解得t=1.如图1,当点N在CD上时,若PM⊥PN,则∠HMP=30°.∴MH=1PH,同理可得t=.故当t=1或时,存在以PN为一直角边的直角三角形.一、填空题(本大题共5个小题,每小题4分,共20分)19、1【解析】

过点A作交BC于点E,先根据含1°的直角三角形的性质得出,设,则,根据的面积为27建立方程求出x的值,进而可求出AB,CD的长度,最后利用周长公式求解即可.【详解】过点A作交BC于点E,∵,,.∵,∴设,则.∵的面积为27,,即,解得或(舍去),∴,∴的周长为.故答案为:1.本题主要考查含1°的直角三角形的性质及平行四边形的周长和面积,掌握含1°的直角三角形的性质并利用方程的思想是解题的关键.20、1【解析】

根据正方形的对角线将正方形分为两个全等的等腰直角三角形,AC是该三角形的斜边,由此根据三角形面积的计算公式得到正方形的面积.【详解】正方形ABCD的一条对角线将正方形分为两个全等的等腰直角三角形,即AC是等腰直角三角形的斜边,∵AC=∴正方形ABCD的面积两个直角三角形的面积和,∴正方形ABCD的面积=,故答案为:1.此题考查正方形的性质,等腰直角三角形的性质,正确掌握正方形的性质是解题的关键.21、或.【解析】

由B、D坐标可求得直线BD的解析式,当M点在x轴上方时,则有CM∥AN,则可求出点M的坐标,代入直线BD解析式可求得M点的坐标,当M点在x轴下方时,同理可求得点M点的纵坐标,则可求得M点的坐标;【详解】∵,,∴OA=2,OB=4,∵将△OAB绕O点顺时针旋转90°得到△OCD,∴OC=OA=2,OD=OB=4,AB=CD,可知,,设直线BD的解析式为,把B、D两点的坐标代入得:,解得,∴直线BD的解析式为,当M点在x轴上方时,则有CM∥AN,即CM∥x轴,∴点M到x轴的距离等于点C到x轴的距离,∴M点的纵坐标为2,在中,令,可得,∴,当M点在x轴下方时,M点的纵坐标为-2,在中,令,可得,∴,综上所述,M的坐标为或.本题主要考查了一次函数的综合,准确利用知识点是解题的关键.22、3;【解析】

根据矩形是中心对称图形寻找思路:△OBF≌△ODE,图中阴影部分的面积就是△ADC的面积.【详解】根据矩形的性质得△OBF≌△ODE,

属于图中阴影部分的面积就是△ADC的面积.

S△ADC=CD×AD=×2×3=3.

故图中阴影部分的面积是3.本题考查全等三角形的判定与性质、矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质.23、4【解析】

按照二次根式的乘、除运算法则运算即可求解.【详解】解:原式=故答案为:4.本题考查二次根

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论