2024年四川省简阳市镇金区、简城区数学九上开学达标检测模拟试题【含答案】_第1页
2024年四川省简阳市镇金区、简城区数学九上开学达标检测模拟试题【含答案】_第2页
2024年四川省简阳市镇金区、简城区数学九上开学达标检测模拟试题【含答案】_第3页
2024年四川省简阳市镇金区、简城区数学九上开学达标检测模拟试题【含答案】_第4页
2024年四川省简阳市镇金区、简城区数学九上开学达标检测模拟试题【含答案】_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共8页2024年四川省简阳市镇金区、简城区数学九上开学达标检测模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)若,则下列各式中,错误的是()A. B. C. D.2、(4分)矩形ABCD中,已知AB=5,AD=12,则AC长为()A.9 B.13 C.17 D.203、(4分)若分式x2-1x2+x-2的值为零,则A.x=1 B.x=±1 C.x=-1 D.x≠14、(4分)某商店在节日期间开展优惠促销活动:购买原价超过500元的商品,超过500元的部分可以享受打折优惠.若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)的函数关系的图像如图所示,则超过500元的部分可以享受的优惠是()A.打六折 B.打七折 C.打八折 D.打九折5、(4分)如图,直线y=kx+b(k≠0)经过点A(﹣2,4),则不等式kx+b>4的解集为()A.x>﹣2 B.x<﹣2 C.x>4 D.x<46、(4分)关于2、6、1、10、6的这组数据,下列说法正确的是()A.这组数据的众数是6 B.这组数据的中位数是1C.这组数据的平均数是6 D.这组数据的方差是107、(4分)如图,平行四边形ABCD的对角线AC、BD相交于点O,下列结论正确的是()A.SABCD=4S△AOBB.AC=BDC.AC⊥BDD.ABCD是轴对称图形8、(4分)如图,在平行四边形ABCD中,点E是CD边上一点,,连接AE、BE、BD,且AE、BD交于点F,若,则()A.15.5 B.16.5 C.17.5 D.18.5二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)一只不透明的袋子中装有4个小球,分别标有数字2,3,4,,这些球除数字外都相同.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和.记录后都将小球放回袋中搅匀,进行重复实验.实验数据如下表:摸球总次数1020306090120180240330450“和为7”出现的频数19142426375882109150“和为7”出现的频率0.100.450.470.400.290.310.320.340.330.33试估计出现“和为7”的概率为________.10、(4分)从沿北偏东的方向行驶到,再从沿南偏西方向行驶到,则______.11、(4分)在平面直角坐标系中,已知一次函数的图像经过,两点,若,则.(填”>”,”<”或”=”)12、(4分)如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=度.13、(4分)某日,王艳骑自行车到位于家正东方向的演奏厅听音乐会.王艳离家5分钟后自行车出现故障而且发现没有带钱包,王艳立即打电话通知在家看报纸的爸爸骑自行车赶来送钱包(王艳打电话和爸爸准备出门的时间忽略不计),同时王艳以原来一半的速度推着自行车继续走向演奏厅.爸爸接到电话后,立刻出发追赶王艳,追上王艳的同时,王艳坐上出租车并以爸爸速度的2倍赶往演奏厅(王艳打车和爸爸将钱包给王艳的时间忽略不计),同时爸爸立刻掉头以原速赶到位于家正西方3900米的公司上班,最后王艳比爸爸早到达目地的.在整个过程中,王艳和爸爸保持匀速行驶.如图是王艳与爸爸之间的距离y(米)与王艳出发时间x(分钟)之间的函数图象,则王艳到达演奏厅时,爸爸距离公司_____米.三、解答题(本大题共5个小题,共48分)14、(12分)计算:(+)×﹣415、(8分)如图,在四边形是边长为4的正方形点P为OA边上任意一点(与点不重合),连接CP,过点P作,且,过点M作,交于点联结,设.(1)当时,点的坐标为(,)(2)设,求出与的函数关系式,写出函数的自变量的取值范围.(3)在轴正半轴上存在点,使得是等腰三角形,请直接写出不少于4个符合条件的点的坐标(用的式子表示)16、(8分)某市举行“行动起来,对抗雾霾”为主题的植树活动,某街道积极响应,决定对该街道进行绿化改造,共购进甲、乙两种树共50棵,已知甲树每棵800元,乙树每棵1200元.(1)若购买两种树的总金额为56000元,求甲、乙两种树各购买了多少棵?(2)若购买甲树的金额不少于购买乙树的金额,至少应购买甲树多少棵?17、(10分)已知:如图1,Rt△ABC中,∠BAC=90°,点D是线段AC的中点,连接BD并延长至点E,使BE=2BD.连接AE,CE.(1)求证:四边形ABCE是平行四边形;(2)如图2所示,将三角板顶点M放在AE边上,两条直角边分别过点B和点C,若∠MEC=∠EMC,BM交AC于点N.求证:△ABN≌△MCN.18、(10分)在▱ABCD中,对角线AC、BD相交于O,EF过点O,连接AF、CE.(1)求证:△BFO≌△DEO;(2)若AF⊥BC,试判断四边形AFCE的形状,并加以证明;(3)若在(2)的条件下再添加EF平分∠AEC,试判断四边形AFCE的形状,无需说明理由.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)若关于x的分式方程有增根,则k的值为__________.20、(4分)如图,在菱形ABCD中,点E是AD的中点,对角线AC,BD交于点F,若菱形ABCD的周长是24,则EF=______.21、(4分)一次函数y=2x-4的图像与x轴的交点坐标为_______.22、(4分)已知一次函数y=-2x+9的图象经过点(a,3)则a=_______.23、(4分)甲、乙两位选手各射击10次,成绩的平均数都是9.2环,方差分别是,,则____选手发挥更稳定.二、解答题(本大题共3个小题,共30分)24、(8分)如图,直线与直线,两直线与轴的交点分别为、.(1)求两直线交点的坐标;(2)求的面积.25、(10分)甲、乙两个工程队需完成A、B两个工地的工程.若甲、乙两个工程队分别可提供40个和50个标准工作量,完成A、B两个工地的工程分别需要70个和20个标准工作量,且两个工程队在A、B两个工地的1个标准工作量的成本如下表所示:A工地B工地甲工程队800元750元乙工程队600元570元设甲工程队在A工地投入x(20≤x≤40)个标准工作量,完成这两个工程共需成本y元.(1)求y与x之间的函数关系式;(2)请判断y是否能等于62000,并说明理由.26、(12分)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y(千克)…34.83229.628…售价x(元/千克)…22.62425.226…(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】

根据不等式性质分析即可解答.【详解】解:A、两边都乘以-1,不等号的方向改变,选项变形错误,故A符合题意;B、两边都减3,不等号的方向不变,故B不符合题意;

C、两边都乘以-2,不等号的方向改变,故C不符合题意;

D、两边都乘以,不等号的方向不变,故D不符合题意;故选:A.主要考查了不等式的基本性质:

(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.

(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.

(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.2、B【解析】

由勾股定理可求出BD长,由矩形的性质可得AC=BD=1.【详解】如图,矩形ABCD中,∠BAD=90°,AB=5,AD=12,∴1,∴AC=BD=1.故选B.本题考查了矩形的性质,勾股定理,求出DB的长是解答本题的关键.3、C【解析】

直接利用分式的值为零则分子为零,分母不为零,进而得出答案.【详解】解:∵分式x2∴x2−1=0且x2+x−2≠0,解得:x=−1.故选:C.此题主要考查了分式的值为零的条件,正确解方程是解题关键.4、C【解析】

设超过200元的部分可以享受的优惠是打n折,根据:实际付款金额=500+(商品原价-500)×,列出y关于x的函数关系式,由图象将x=1000、y=900代入求解可得.【详解】设超过500元的部分可以享受的优惠是打n折,根据题意,得:y=500+(x-500)•,由图象可知,当x=1000时,y=900,即:900=500+(1000-500)×,解得:n=8,∴超过500元的部分可以享受的优惠是打8折,故选C.本题主要考查一次函数的实际应用,理解题意根据相等关系列出实际付款金额y与商品原价x间的函数关系式是解题的关键.5、A【解析】【分析】求不等式kx+b>4的解集就是求函数值大于4时,自变量的取值范围,观察图象即可得.【详解】由图象可以看出,直线y=4上方函数图象所对应自变量的取值为x>-2,∴不等式kx+b>4的解集是x>-2,故选A.【点睛】本题考查了一次函数与一元一次不等式;观察函数图象,比较函数图象的高低(即比较函数值的大小),确定对应的自变量的取值范围.也考查了数形结合的思想.6、A【解析】

根据方差、算术平均数、中位数、众数的概念进行分析.【详解】数据由小到大排列为1,2,6,6,10,它的平均数为(1+2+6+6+10)=5,数据的中位数为6,众数为6,数据的方差=[(1﹣5)2+(2﹣5)2+(6﹣5)2+(6﹣5)2+(10﹣5)2]=10.1.故选A.考点:方差;算术平均数;中位数;众数.7、A【解析】

试题分析:A、∵平行四边形ABCD的对角线AC、BD相交于点O,∴AO=CO,DO=BO.∴S△AOD=S△DOC=S△BOC=S△AOB.∴SABCD=4S△AOB,故此选项正确;B、无法得到AC=BD,故此选项错误;C、无法得到AC⊥BD,故此选项错误;D、ABCD是中心对称图形,不是轴对称图形,故此选项错误.故选A.8、C【解析】

根据已知可得到相似三角形,从而可得到其相似比,根据相似三角形的面积比等于相似比的平方求出△ABF,再根据同高的三角形的面积之比等于底的比得出△BEF的面积,则=+即可求解.【详解】解:∵四边形ABCD是平行四边形,∴DE∥AB,∴△DFE∽△BFA,∵DE:EC=2:3,∴DE:AB=2:5,DF:FB=2:5,∵=2,根据相似三角形的面积比等于相似比的平方,∴:=,即==12.5,∵同高的三角形的面积之比等于底的比,△DEF和△BEF分别以DF、FB为底时高相同,∴:=DF:FB=2:5,即==5,∴=+=12.5+5=17.5,故选C.本题考查了相似三角形的性质,相似三角形的面积比等于相似比的平方,同高的三角形的面积之比等于底的比,解题的关键是掌握相似三角形的性质.二、填空题(本大题共5个小题,每小题4分,共20分)9、0.33【解析】

由于大量试验中“和为7”出现的频数稳定在0.3附近,据图表,可估计“和为7”出现的概率为3.1,3.2,3.3等均可.【详解】出现和为7的概率是:0.33(或0.31,0.32,0.34均正确);故答案为:0.33此题考查利用频率估计概率,解题关键在于看懂图中数据10、40【解析】

根据方位角的概念,画图正确表示出行驶的过程,再根据已知转向的角度结合三角形的内角和与外角的关系求解.【详解】如图,A沿北偏东60°的方向行驶到B,则∠BAC=90°-60°=30°,

B沿南偏西20°的方向行驶到C,则∠BCO=90°-20°=70°,

又∵∠ABC=∠BCO-∠BAC,∴∠ABC=70°-30°=40°.故答案为:40°解答此类题需要从运动的角度,正确画出方位角,再结合三角形的内角和与外角的关系求解.11、.【解析】试题分析:一次函数的增减性有两种情况:①当时,函数的值随x的值增大而增大;②当时,函数y的值随x的值增大而减小.由题意得,函数的,故y的值随x的值增大而增大.∵,∴.考点:一次函数图象与系数的关系.12、135【解析】试题分析:如图,连接EE′,∵将△ABE绕点B顺时针旋转30°到△CBE′的位置,AE=1,BE=3,CE=3,∴∠EBE′=30°,BE=BE′=3,AE=E′C=1.∴EE′=3,∠BE′E=45°.∵E′E3+E′C3=8+1=3,EC3=3.∴E′E3+E′C3=EC3.∴△EE′C是直角三角形,∴∠EE′C=30°.∴∠BE′C=135°.13、1.【解析】

根据函数图象可知,王艳出发10分钟后,爸爸追上了王艳,根据此时爸爸的5分钟的行程等于王艳前5分钟的行程与后5分钟的行程和,得到爸爸的速度与王艳骑自行车的速度的关系,再根据函数图象可知,爸爸到赶到公司时,公司距离演奏厅的距离为9400米,再根据已知条件,便可求得家与演奏厅的距离,由函数图象又可知,王艳到达演奏厅的时间为秒,据此列出方程,求得王艳的速度与爸爸的速度,进而便可求得结果.【详解】解:设王艳骑自行车的速度为xm/min,则爸爸的速度为:(5x+x)÷5=x(m/min),由函数图象可知,公司距离演奏厅的距离为9400米,∵公司位于家正西方3900米,∴家与演奏厅的距离为:9400﹣3900=5500(米),根据题意得,5x+5×x+()×=5500,解得,x=200(m/min),∴爸爸的速度为:(m/min)∴王艳到达演奏厅时,爸爸距离公司的距离为:5×300+3900﹣()×300=1(m).故答案为:1.本题考查了函数图象与行程问题,解题的关键是将函数图象与实际的行程对应起来,列出方程,解出相关量.三、解答题(本大题共5个小题,共48分)14、【解析】

先利用分配律进行运算,然后进行二次根式的乘法运算,是后进行加减法运算即可得.【详解】解:原式===.本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的顺序并正确化简二次根式是解题的关键.15、(1)点的坐标为;(2);(3),,,【解析】

(1)过点作,由“”可证,可得,,即可求点坐标;(2)由(1)可知,设OP=x,则可得M点坐标为(4+x,x),由直线OB解析式可得N(x,x),即可知MN=4,由一组对边平行而且相等的四边形是平行四边形即可证明四边形是平行四边形,进而可求与的函数关系式;(3)首先画出符合要求的点的图形,共分三种情况,第一种情况:当为底边时,第二种情况:当M为顶点为腰时,第三种情况:当N为顶点为腰时,然后根据图形特征结合勾股定理求出各种情况点的坐标即可解答.【详解】解:(1)如图,过点作,,且,且,,点坐标为故答案为(2)由(1)可知,点坐标为四边形是边长为4的正方形,点直线的解析式为:,交于点,点坐标为,且四边形是平行四边形(3)在轴正半轴上存在点,使得是等腰三角形,此时点的坐标为:,,,,,,其中,理由:当(2)可知,,,轴,所以共分为以下几种请:第一种情况:当为底边时,作的垂直平分线,与轴的交点为,如图2所示,,第二种情况:如图3所示,当M为顶点为腰时,以为圆心,的长为半径画弧交轴于点、,连接、,则,,,,,,,,;第三种情况,当以N为顶点、为腰时,以为圆心,长为半径画圆弧交轴正半轴于点,当时,如图4所示,则,,即,.当时,则,此时点与点重合,舍去;当时,如图5,以为圆心,为半径画弧,与轴的交点为,.的坐标为:,.,,所以,综上所述,,,,,,,使是等腰三角形.本题考查四边形综合题,解题的关键是明确题意,画出相应的图象,找出所求问题需要的条件,利用数形结合的思想解答问题.16、(1)购买了甲树10棵、乙树40棵;(2)至少应购买甲树30棵.【解析】

(1)首先设甲种树购买了x棵,乙种数购买了y棵,由题意得等量关系:①进甲、乙两种树共50棵;②购买两种树总金额为56000元,根据等量关系列出方程组,再解即可;(2)首先设应购买甲树x棵,则购买乙种树(50﹣a)棵,由题意得不等关系:购买甲树的金额≥购买乙树的金额,再列出不等式,求解即可.【详解】解:(1)设购买了甲树x棵、乙树y棵,根据题意得解得:答:购买了甲树10棵、乙树40棵;(2)设应购买甲树a棵,根据题意得:800a≥1200(50﹣a)解得:a≥30答:至少应购买甲树30棵.此题主要考查了二元一次方程组和一元一次不等式的应用,关键是正确理解题意,找出题目中的等量关系和不等关系,列出方程组和不等式.17、(1)详见解析;(2)详见解析;【解析】

(1)根据平行四边形的判定定理证明即可.(2)根据平行四边形的性质和已知条件,利用角角边即可证明三角形的全等.【详解】解:(1)∵点D是线段AC的中点,BE=2BD,∴AD=CD,DE=BD,∴四边形ABCE是平行四边形.(2)∵四边形ABCE是平行四边形,∴CE=AB,∵∠MEC=∠EMC,∴CM=AB,在△ABN和△MCN中,,∴△ABN≌△MCN(AAS);本题主要考查平行四边形的性质,难度系数较小,应当熟练掌握.18、(1)详见解析;(2)四边形AFCE是矩形,证明见解析;(3)四边形AFCE是正方形.【解析】

(1)由平行四边形的性质得出OB=OD,OA=OC,AD∥BC,得出∠OBF=∠ODE,由ASA证明△BFO≌△DEO即可;(2)由全等三角形的性质得出BF=DE,证出四边形AFCE是平行四边形,再证出∠AFC=90°,即可得出四边形AFCE是矩形.(3)由EF平分∠AEC知∠AEF=∠CEF,再由AD∥BC知∠AEF=∠CFE,从而得∠CEF=∠CFE,继而知CE=CF,据此可得答案.【详解】解:(1)∵四边形ABCD是平行四边形,∴OB=OD,AD∥BC,AD=BC,∴∠OBF=∠ODE,在△BFO和△DEO中,∵,∴△BFO≌△DEO(ASA);(2)四边形AFCE是矩形;理由如下:∵△BFO≌△DEO,∴BF=DE,∴CF=AE,∵AD∥BC,∴四边形AFCE是平行四边形;又∵AF⊥BC,∴∠AFC=90°,∴四边形AFCE是矩形;(3)∵EF平分∠AEC,∴∠AEF=∠CEF,∵AD∥BC,∴∠AEF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,∴四边形AFCE是正方形.本题考查了四边形的综合问题,主要考查平行四边形的性质与判定、全等三角形的判定与性质、矩形的判定;熟练掌握平行四边形的性质,并能进行推理论证是解决问题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、或【解析】

分式方程去分母转化为整式方程,由分式方程有增根,得到最简公分母为0求出的值,代入整式方程求出的值即可.【详解】解:去分母得:,整理得:由分式方程有增根,得到,解得:或,把代入整式方程得:;把代入整式方程得:,则的值为或.故答案为:或此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.20、3【解析】

由菱形的周长为24,可求菱形的边长为6,则可以求EF.【详解】解:∵菱形ABCD的周长是24,∴AB=AB=BC=DC=24÷4=6,∵F为对角线AC、BD交点,∴F为DB的中点,又∵E为AD的中点,∴EF=12AB=3,故答案为本题考查了菱形的性质,熟练掌握并灵活运用是解题的关键.21、(2,1)【解析】

把y=1代入y=2x+4求出x的值,即可得出答案.【详解】把y=1代入y=2x-4得:1=2x-4,

x=2,

即一次函数y=2x-4与x轴的交点坐标是(2,1).

故答案是:(2,1).考查了一次函数图象上点的坐标特征,注意:一次函数与x轴的交点的纵坐标是1.22、3【解析】

将(a,3)代入一次函数解析式y=-2x+9进行计算即可得.【详解】把(a,3)代入一次函数解析式y=-2x+9,得3=-2a+9,解得:a=3,故答案为:3.本题考查了一次函数图象上点的坐标特征,熟知一次函数图象上的点的坐标一定满足该函数的解析式是解题的关键.23、甲【解析】

根据方差越大波动越大越不稳定,作出判断即可.【详解】解:∵S甲2=0.015,S乙2=0.025,

∴S乙2>S甲2,

∴成绩最稳定的是甲.

故答案为:甲.本题考查方差的意义.方差是用来

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论