版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题02必要性探路(端点效应)含有参数的不等式恒成立求参数的取值范围问题,是热点和重点题型,方法灵活多样,常见的方法有:①分离参数+函数最值;②直接化为最值+分类讨论.但当问题具有区间端点(定义域内一点)的函数值恰好是不等式恒成立时的临界值是这一显著特征时,应运用“零点、端点效应”.其具体方法是:先在定义域内取这个特殊值,然后由不等式成立求出参数的取值范围,显然这个取值范围是不等式恒成立的一个必要条件,这样相当于对参数增加了一个条件,对问题解决有很好的导向性.接下来在这个条件下继续求解,然而有趣的是在后面的解答中我们发现求出的这个范围恰好是不等式恒成立的充分条件,也就是说赋值法求出的参数取值范围有时恰好是题目所求的取值范围.必要探路法,就是利用端点效应的原理;其基本步骤如下:1.探究必要条件,缩小参数范围:首先利用端点效应初步获得参数的取值范围,这个范围是必要的;常见的几种缩小参数范围的思路:(1)若在上恒成立,则在区间端点处也成立,即此法应用于区间端点值包含参数的情况.(2)若在上恒成立,且则此法应用于区间端点的函数值为零的情况.(3)若在上恒成立,且,则此法应用于区间端点的函数值为零且导数值也为零的情况.(4)若在上恒成立,则,此法应用于区间端点值包含参数的情况.(5)若在上恒成立,则,此法应用于区间端点值包含参数的情况.2.证明充分性,求结果:利用第一步中的参数的范围去判定函数是否单调;(1)如果函数单调,则由端点得到的范围就是最终答案;(2)如果函数不单调,则利用端点确定的范围进一步确定函数的最值.若使用必要探路法,则尤其要注意第一步,即寻找必要条件,因为其具有较强的技巧性.常见的选取技巧包括选择端点值、极值点、不等式公共取等条件、常见特殊数(如等).1.是否存在正整数,使得对一切恒成立?试求出的最大值.2.求k的最大整数值.3.已知函数.(1)当时,求曲线在点,(1)处的切线与两坐标轴围成的三角形的面积;(2)若,求的取值范围.4.已知函数.(1)当时,讨论函数的单调性;(2)当时,若,且在时恒成立,求实数的取值范围.5.已知函数(1)若函数与有公共点,求的取值范围;(2)若不等式恒成立,求整数的最小值.6.已知,,.(1)若,证明:;(2)对任意都有,求整数的最大值.7.设函数.(1)当时,判断函数的零点的个数,并且说明理由;(2)若对所有,都有,求正数的取值范围.8.已知函数f(x)=aex-1-x,对于,证明:当时,不等式恒成立.9.已知函数,.(Ⅰ)当时,讨论函数的单调性;(Ⅱ)若在区间,上恒成立,求实数的取值范围.10.已知函数,其中是自然对数的底数.(1)求函数在处的切线方程;(2)当时,恒成立,求的最大值.11.已知函数,其中.(Ⅰ)函数的图象能否与轴相切?若能,求出实数,若不能,请说明理由;(Ⅱ)求最大的整数,使得对任意,,不等式恒成立.12.已知函数.(1)证明:存在唯一零点;(2)若时,,求的取值范围.13.设函数,其中.(Ⅰ)当时,求函数的零点;(Ⅱ)若对任意,,恒有,求实数的取值范围.14.已知函数,为的导函数.(1)讨论在区间内极值点的个数;(2)若,时,恒成立,求整数的最小值.15.(Ⅰ)证明:,,;(Ⅱ)若在,上恒成立,求的取值范围;(Ⅲ)已知函数,若正实数,满足,证明:当时,恒有.16.已知,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二手车交易协议个人
- 劳动合同解除协议书大全七篇
- 颈动脉斑块病因介绍
- 公司借款的协议书范本10篇
- 单位股东合作的协议书
- 药物中毒性周围神经病病因介绍
- 2023-2024学年天津市五区县重点校联考高三(上)期末语文试卷
- 2023年天津市部分区高考语文二模试卷
- 江苏省盐城市建湖县汉开书院学校2023-2024学年七年级上学期第二次月考道德与法治试题(解析版)-A4
- 食品工厂机械与设备模拟习题与参考答案
- 唐山棋子烧饼推广策划方案
- 网络运维与安全管理培训内容
- 疼痛科护士的自我成长与专业发展路径
- 低碳建筑课件
- 大数据在生命科学中的应用与挑战
- 西餐烹饪职业生涯规划书
- 短缺药培训课件
- 江苏省南京市秦淮区2023-2024学年八年级上学期期末数学试卷
- 脐血流检查培训演示课件
- 《幼儿教育学》案例分析题
- 迈瑞行业竞争分析
评论
0/150
提交评论