版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河北省张家口市涿鹿中学高三数学第一学期期末教学质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.总体由编号01,,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为7816
6572
0802
6314
0702
4369
9728
0198
3204
9234
4935
8200
3623
4869
6938
7481
A.08 B.07 C.02 D.012.正三棱锥底面边长为3,侧棱与底面成角,则正三棱锥的外接球的体积为()A. B. C. D.3.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是()A. B. C. D.4.若平面向量,满足,则的最大值为()A. B. C. D.5.复数的实部与虚部相等,其中为虚部单位,则实数()A.3 B. C. D.6.音乐,是用声音来展现美,给人以听觉上的享受,熔铸人们的美学趣味.著名数学家傅立叶研究了乐声的本质,他证明了所有的乐声都能用数学表达式来描述,它们是一些形如的简单正弦函数的和,其中频率最低的一项是基本音,其余的为泛音.由乐声的数学表达式可知,所有泛音的频率都是基本音频率的整数倍,称为基本音的谐波.下列函数中不能与函数构成乐音的是()A. B. C. D.7.半径为2的球内有一个内接正三棱柱,则正三棱柱的侧面积的最大值为()A. B. C. D.8.已知函数,若关于的方程恰好有3个不相等的实数根,则实数的取值范围为()A. B. C. D.9.已知集合,,则A. B. C. D.10.在四边形中,,,,,,点在线段的延长线上,且,点在边所在直线上,则的最大值为()A. B. C. D.11.已知非零向量,满足,则“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件解:12.已知为虚数单位,复数,则其共轭复数()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.对定义在上的函数,如果同时满足以下两个条件:(1)对任意的总有;(2)当,,时,总有成立.则称函数称为G函数.若是定义在上G函数,则实数a的取值范围为________.14.已知函数函数,其中,若函数恰有4个零点,则的取值范围是__________.15.已知向量,,若满足,且方向相同,则__________.16.设复数满足,其中是虚数单位,若是的共轭复数,则____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)把的参数方程化为极坐标方程:(2)求与交点的极坐标.18.(12分)设点,分别是椭圆的左、右焦点,为椭圆上任意一点,且的最小值为1.(1)求椭圆的方程;(2)如图,动直线与椭圆有且仅有一个公共点,点,是直线上的两点,且,,求四边形面积的最大值.19.(12分)如图,在三棱锥中,,是的中点,点在上,平面,平面平面,为锐角三角形,求证:(1)是的中点;(2)平面平面.20.(12分)已知函数(1)若恒成立,求实数的取值范围;(2)若方程有两个不同实根,,证明:.21.(12分)已知函数,设的最小值为m.(1)求m的值;(2)是否存在实数a,b,使得,?并说明理由.22.(10分)在平面直角坐标系中,直线的的参数方程为(其中为参数),以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线经过点.曲线的极坐标方程为.(1)求直线的普通方程与曲线的直角坐标方程;(2)过点作直线的垂线交曲线于两点(在轴上方),求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】从第一行的第5列和第6列起由左向右读数划去大于20的数分别为:08,02,14,07,01,所以第5个个体是01,选D.考点:此题主要考查抽样方法的概念、抽样方法中随机数表法,考查学习能力和运用能力.2、D【解析】
由侧棱与底面所成角及底面边长求得正棱锥的高,再利用勾股定理求得球半径后可得球体积.【详解】如图,正三棱锥中,是底面的中心,则是正棱锥的高,是侧棱与底面所成的角,即=60°,由底面边长为3得,∴.正三棱锥外接球球心必在上,设球半径为,则由得,解得,∴.故选:D.【点睛】本题考查球体积,考查正三棱锥与外接球的关系.掌握正棱锥性质是解题关键.3、D【解析】
根据三视图判断出几何体为正四棱锥,由此计算出几何体的表面积.【详解】根据三视图可知,该几何体为正四棱锥.底面积为.侧面的高为,所以侧面积为.所以该几何体的表面积是.故选:D【点睛】本小题主要考查由三视图判断原图,考查锥体表面积的计算,属于基础题.4、C【解析】
可根据题意把要求的向量重新组合成已知向量的表达,利用向量数量积的性质,化简为三角函数最值.【详解】由题意可得:,,,故选:C【点睛】本题主要考查根据已知向量的模求未知向量的模的方法技巧,把要求的向量重新组合成已知向量的表达是本题的关键点.本题属中档题.5、B【解析】
利用乘法运算化简复数即可得到答案.【详解】由已知,,所以,解得.故选:B【点睛】本题考查复数的概念及复数的乘法运算,考查学生的基本计算能力,是一道容易题.6、C【解析】
由基本音的谐波的定义可得,利用可得,即可判断选项.【详解】由题,所有泛音的频率都是基本音频率的整数倍,称为基本音的谐波,由,可知若,则必有,故选:C【点睛】本题考查三角函数的周期与频率,考查理解分析能力.7、B【解析】
设正三棱柱上下底面的中心分别为,底面边长与高分别为,利用,可得,进一步得到侧面积,再利用基本不等式求最值即可.【详解】如图所示.设正三棱柱上下底面的中心分别为,底面边长与高分别为,则,在中,,化为,,,当且仅当时取等号,此时.故选:B.【点睛】本题考查正三棱柱与球的切接问题,涉及到基本不等式求最值,考查学生的计算能力,是一道中档题.8、D【解析】
讨论,,三种情况,求导得到单调区间,画出函数图像,根据图像得到答案.【详解】当时,,故,函数在上单调递增,在上单调递减,且;当时,;当时,,,函数单调递减;如图所示画出函数图像,则,故.故选:.【点睛】本题考查了利用导数求函数的零点问题,意在考查学生的计算能力和应用能力.9、C【解析】分析:根据集合可直接求解.详解:,,故选C点睛:集合题也是每年高考的必考内容,一般以客观题形式出现,一般解决此类问题时要先将参与运算的集合化为最简形式,如果是“离散型”集合可采用Venn图法解决,若是“连续型”集合则可借助不等式进行运算.10、A【解析】
依题意,如图以为坐标原点建立平面直角坐标系,表示出点的坐标,根据求出的坐标,求出边所在直线的方程,设,利用坐标表示,根据二次函数的性质求出最大值.【详解】解:依题意,如图以为坐标原点建立平面直角坐标系,由,,,,,,,因为点在线段的延长线上,设,解得,所在直线的方程为因为点在边所在直线上,故设当时故选:【点睛】本题考查向量的数量积,关键是建立平面直角坐标系,属于中档题.11、C【解析】
根据向量的数量积运算,由向量的关系,可得选项.【详解】,,∴等价于,故选:C.【点睛】本题考查向量的数量积运算和命题的充分、必要条件,属于基础题.12、B【解析】
先根据复数的乘法计算出,然后再根据共轭复数的概念直接写出即可.【详解】由,所以其共轭复数.故选:B.【点睛】本题考查复数的乘法运算以及共轭复数的概念,难度较易.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由不等式恒成立问题采用分离变量最值法:对任意的恒成立,解得,又在,恒成立,即,所以,从而可得.【详解】因为是定义在上G函数,所以对任意的总有,则对任意的恒成立,解得,当时,又因为,,时,总有成立,即恒成立,即恒成立,又此时的最小值为,即恒成立,又因为解得.故答案为:【点睛】本题是一道函数新定义题目,考查了不等式恒成立求参数的取值范围,考查了学生分析理解能力,属于中档题.14、【解析】∵,∴,∵函数y=f(x)−g(x)恰好有四个零点,∴方程f(x)−g(x)=0有四个解,即f(x)+f(2−x)−b=0有四个解,即函数y=f(x)+f(2−x)与y=b的图象有四个交点,,作函数y=f(x)+f(2−x)与y=b的图象如下,,结合图象可知,<b<2,故答案为.点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.15、【解析】
由向量平行坐标表示计算.注意验证两向量方向是否相同.【详解】∵,∴,解得或,时,满足题意,时,,方向相反,不合题意,舍去.∴.故答案为:1.【点睛】本题考查向量平行的坐标运算,解题时要注意验证方向相同这个条件,否则会出错.16、【解析】
由于,则.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)与交点的极坐标为,和【解析】
(1)先把曲线化成直角坐标方程,再化简成极坐标方程;(2)联立曲线和曲线的方程解得即可.【详解】(1)曲线的直角坐标方程为:,即.的参数方程化为极坐标方程为;(2)联立可得:,与交点的极坐标为,和.【点睛】本题考查了参数方程,直角坐标方程,极坐标方程的互化,也考查了极坐标方程的联立,属于基础题.18、(1);(2)2.【解析】
(1)利用的最小值为1,可得,,即可求椭圆的方程;(2)将直线的方程代入椭圆的方程中,得到关于的一元二次方程,由直线与椭圆仅有一个公共点知,即可得到,的关系式,利用点到直线的距离公式即可得到,.当时,设直线的倾斜角为,则,即可得到四边形面积的表达式,利用基本不等式的性质,结合当时,四边形是矩形,即可得出的最大值.【详解】(1)设,则,,,,由题意得,,椭圆的方程为;
(2)将直线的方程代入椭圆的方程中,得.
由直线与椭圆仅有一个公共点知,,化简得:.
设,,当时,设直线的倾斜角为,则,,,,∴当时,,,.当时,四边形是矩形,.
所以四边形面积的最大值为2.【点睛】本题主要考查椭圆的方程与性质、直线方程、直线与椭圆的位置关系、向量知识、二次函数的单调性、基本不等式的性质等基础知识,考查运算能力、推理论证以及分析问题、解决问题的能力,考查数形结合、化归与转化思想.19、(1)证明见解析;(2)证明见解析;【解析】
(1)推导出,由是的中点,能证明是有中点.(2)作于点,推导出平面,从而,由,能证明平面,由此能证明平面平面.【详解】证明:(1)在三棱锥中,平面,平面平面,平面,,在中,是的中点,是有中点.(2)在三棱锥中,是锐角三角形,在中,可作于点,平面平面,平面平面,平面,平面,平面,,,,平面,平面,平面平面.【点睛】本题考查线段中点的证明,考查面面垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,属于中档题.20、(1)(2)详见解析【解析】
(1)将原不等式转化为,构造函数,求得的最大值即可;
(2)首先通过求导判断的单调区间,考查两根的取值范围,再构造函数,将问题转化为证明,探究在区间内的最大值即可得证.【详解】解:(1)由,即,即,令,则只需,,令,得,在上单调递增,在上单调递减,,的取值范围是;(2)证明:不妨设,当时,单调递增,当时,单调递减,,当时,,,要证,即证,由在上单调递增,只需证明,由,只需证明,令,,只需证明,易知,由,故,,从而在上单调递增,由,故当时,,故,证毕.【点睛】本题考查利用导数研究函数单调性,最值等,关键是要对问题进行转化,比如把恒成立问题转化为最值问题,把根的个数问题转化为图像的交点个数,进而转化为证明不等式的问题,属难题.21、(1)(2)不存在;详见解析【解析】
(1)将函数去绝对值化为分段函数的形式,从而可求得函数的最小值,进而可得m.(2)由,利用基本不等式即可求出.【详解】(1);(2),若,同号,,不成立;或,异号,,不成立;故不存在实数,,使得,.【点睛】本题考查了分段函数的最值、基本不等式的应用,属于基础题.22、(1),;(2)【解析】
(1)利用代入法消去参数可得到直线的普通方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 购房补充协议书的法律效力
- 购销合同中的国际通信技术与网络合作
- 购销合同管材的交付与验收
- 赞助商资金赞助协议
- 足球场草坪材料购销
- 轮胎购销业务协议
- 载人货梯采购合同
- 造价咨询招标文件的编制
- 通讯设备采购协议
- 配电工程招标文件答疑处理常见问题
- 2023年国家电网有限公司招聘考试真题
- 《PLC技术及应用》期末试卷-B卷及答案
- 《预防性侵害讲座》课件
- 汽车维修质量检验与控制预案
- 今天我当家(课件)粤教版四年级上册综合实践活动-
- 风的成因课件
- 2024版成人术中非计划低体温预防与护理TCNAS 44─20242
- 2024版2024不良资产咨询服务标准协议书五篇范文
- 护士长招聘笔试题与参考答案(某世界500强集团)2024年
- 部编版(2024)一年级道德与法治上册第12课《玩也有学问》教学课件
- 2024年重庆市高考地理真题(解析版)
评论
0/150
提交评论