2025届烟台市重点中学高三数学第一学期期末质量检测试题含解析_第1页
2025届烟台市重点中学高三数学第一学期期末质量检测试题含解析_第2页
2025届烟台市重点中学高三数学第一学期期末质量检测试题含解析_第3页
2025届烟台市重点中学高三数学第一学期期末质量检测试题含解析_第4页
2025届烟台市重点中学高三数学第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届烟台市重点中学高三数学第一学期期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知正方体的体积为,点,分别在棱,上,满足最小,则四面体的体积为A. B. C. D.2.设i是虚数单位,若复数是纯虚数,则a的值为()A. B.3 C.1 D.3.已知边长为4的菱形,,为的中点,为平面内一点,若,则()A.16 B.14 C.12 D.84.如图,在底面边长为1,高为2的正四棱柱中,点是平面内一点,则三棱锥的正视图与侧视图的面积之和为()A.2 B.3 C.4 D.55.在边长为的菱形中,,沿对角线折成二面角为的四面体(如图),则此四面体的外接球表面积为()A. B.C. D.6.为计算,设计了如图所示的程序框图,则空白框中应填入()A. B. C. D.7.展开项中的常数项为A.1 B.11 C.-19 D.518.“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称,旨在积极发展我国与沿线国家经济合作关系,共同打造政治互信、经济融合、文化包容的命运共同体.自2015年以来,“一带一路”建设成果显著.如图是2015—2019年,我国对“一带一路”沿线国家进出口情况统计图,下列描述错误的是()A.这五年,出口总额之和比进口总额之和大B.这五年,2015年出口额最少C.这五年,2019年进口增速最快D.这五年,出口增速前四年逐年下降9.某工厂利用随机数表示对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,……,599,600.从中抽取60个样本,下图提供随机数表的第4行到第6行:若从表中第6行第6列开始向右读取数据,则得到的第6个样本编号是()A.324 B.522 C.535 D.57810.已知复数满足,则()A. B.2 C.4 D.311.某三棱锥的三视图如图所示,那么该三棱锥的表面中直角三角形的个数为()A.1 B.2 C.3 D.012.已知抛物线y2=4x的焦点为F,抛物线上任意一点P,且PQ⊥y轴交y轴于点Q,则的最小值为()A. B. C.l D.1二、填空题:本题共4小题,每小题5分,共20分。13.已知点为双曲线的右焦点,两点在双曲线上,且关于原点对称,若,设,且,则该双曲线的焦距的取值范围是________.14.的展开式中,若的奇数次幂的项的系数之和为32,则________.15.若,且,则的最小值是______.16.在数列中,,,曲线在点处的切线经过点,下列四个结论:①;②;③;④数列是等比数列;其中所有正确结论的编号是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知矩形中,,E,F分别为,的中点.沿将矩形折起,使,如图所示.设P、Q分别为线段,的中点,连接.(1)求证:平面;(2)求二面角的余弦值.18.(12分)在中国,不仅是购物,而且从共享单车到医院挂号再到公共缴费,日常生活中几乎全部领域都支持手机支付.出门不带现金的人数正在迅速增加。中国人民大学和法国调查公司益普索合作,调查了腾讯服务的6000名用户,从中随机抽取了60名,统计他们出门随身携带现金(单位:元)如茎叶图如示,规定:随身携带的现金在100元以下(不含100元)的为“手机支付族”,其他为“非手机支付族”.(1)根据上述样本数据,将列联表补充完整,并判断有多大的把握认为“手机支付族”与“性别”有关?(2)用样本估计总体,若从腾讯服务的用户中随机抽取3位女性用户,这3位用户中“手机支付族”的人数为,求随机变量的期望和方差;(3)某商场为了推广手机支付,特推出两种优惠方案,方案一:手机支付消费每满1000元可直减100元;方案二:手机支付消费每满1000元可抽奖2次,每次中奖的概率同为,且每次抽奖互不影响,中奖一次打9折,中奖两次打8.5折.如果你打算用手机支付购买某样价值1200元的商品,请从实际付款金额的数学期望的角度分析,选择哪种优惠方案更划算?附:0.0500.0100.0013.8416.63510.82819.(12分)设函数.(1)当时,求不等式的解集;(2)若对恒成立,求的取值范围.20.(12分)改革开放年,我国经济取得飞速发展,城市汽车保有量在不断增加,人们的交通安全意识也需要不断加强.为了解某城市不同性别驾驶员的交通安全意识,某小组利用假期进行一次全市驾驶员交通安全意识调查.随机抽取男女驾驶员各人,进行问卷测评,所得分数的频率分布直方图如图所示在分以上为交通安全意识强.求的值,并估计该城市驾驶员交通安全意识强的概率;已知交通安全意识强的样本中男女比例为,完成下列列联表,并判断有多大把握认为交通安全意识与性别有关;安全意识强安全意识不强合计男性女性合计用分层抽样的方式从得分在分以下的样本中抽取人,再从人中随机选取人对未来一年内的交通违章情况进行跟踪调查,求至少有人得分低于分的概率.附:其中21.(12分)我国在2018年社保又出新的好消息,之前流动就业人员跨地区就业后,社保转移接续的手续往往比较繁琐,费时费力.社保改革后将简化手续,深得流动就业人员的赞誉.某市社保局从2018年办理社保的人员中抽取300人,得到其办理手续所需时间(天)与人数的频数分布表:时间人数156090754515(1)若300名办理社保的人员中流动人员210人,非流动人员90人,若办理时间超过4天的人员里非流动人员有60人,请完成办理社保手续所需时间与是否流动人员的列联表,并判断是否有95%的把握认为“办理社保手续所需时间与是否流动人员”有关.列联表如下流动人员非流动人员总计办理社保手续所需时间不超过4天办理社保手续所需时间超过4天60总计21090300(2)为了改进工作作风,提高效率,从抽取的300人中办理时间为流动人员中利用分层抽样,抽取12名流动人员召开座谈会,其中3人要求交书面材料,3人中办理的时间为的人数为,求出分布列及期望值.附:0.100.050.0100.0052.7063.8416.6357.87922.(10分)已知函数,设为的导数,.(1)求,;(2)猜想的表达式,并证明你的结论.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

由题意画出图形,将所在的面延它们的交线展开到与所在的面共面,可得当时最小,设正方体的棱长为,得,进一步求出四面体的体积即可.【详解】解:如图,

∵点M,N分别在棱上,要最小,将所在的面延它们的交线展开到与所在的面共面,三线共线时,最小,

设正方体的棱长为,则,∴.

取,连接,则共面,在中,设到的距离为,

设到平面的距离为,

.

故选D.【点睛】本题考查多面体体积的求法,考查了多面体表面上的最短距离问题,考查计算能力,是中档题.2、D【解析】

整理复数为的形式,由复数为纯虚数可知实部为0,虚部不为0,即可求解.【详解】由题,,因为纯虚数,所以,则,故选:D【点睛】本题考查已知复数的类型求参数范围,考查复数的除法运算.3、B【解析】

取中点,可确定;根据平面向量线性运算和数量积的运算法则可求得,利用可求得结果.【详解】取中点,连接,,,即.,,,则.故选:.【点睛】本题考查平面向量数量积的求解问题,涉及到平面向量的线性运算,关键是能够将所求向量进行拆解,进而利用平面向量数量积的运算性质进行求解.4、A【解析】

根据几何体分析正视图和侧视图的形状,结合题干中的数据可计算出结果.【详解】由三视图的性质和定义知,三棱锥的正视图与侧视图都是底边长为高为的三角形,其面积都是,正视图与侧视图的面积之和为,故选:A.【点睛】本题考查几何体正视图和侧视图的面积和,解答的关键就是分析出正视图和侧视图的形状,考查空间想象能力与计算能力,属于基础题.5、A【解析】

画图取的中点M,法一:四边形的外接圆直径为OM,即可求半径从而求外接球表面积;法二:根据,即可求半径从而求外接球表面积;法三:作出的外接圆直径,求出和,即可求半径从而求外接球表面积;【详解】如图,取的中点M,和的外接圆半径为,和的外心,到弦的距离(弦心距)为.法一:四边形的外接圆直径,,;法二:,,;法三:作出的外接圆直径,则,,,,,,,,,.故选:A【点睛】此题考查三棱锥的外接球表面积,关键点是通过几何关系求得球心位置和球半径,方法较多,属于较易题目.6、A【解析】

根据程序框图输出的S的值即可得到空白框中应填入的内容.【详解】由程序框图的运行,可得:S=0,i=0满足判断框内的条件,执行循环体,a=1,S=1,i=1满足判断框内的条件,执行循环体,a=2×(﹣2),S=1+2×(﹣2),i=2满足判断框内的条件,执行循环体,a=3×(﹣2)2,S=1+2×(﹣2)+3×(﹣2)2,i=3…观察规律可知:满足判断框内的条件,执行循环体,a=99×(﹣2)99,S=1+2×(﹣2)+3×(﹣2)2+…+1×(﹣2)99,i=1,此时,应该不满足判断框内的条件,退出循环,输出S的值,所以判断框中的条件应是i<1.故选:A.【点睛】本题考查了当型循环结构,当型循环是先判断后执行,满足条件执行循环,不满足条件时算法结束,属于基础题.7、B【解析】

展开式中的每一项是由每个括号中各出一项组成的,所以可分成三种情况.【详解】展开式中的项为常数项,有3种情况:(1)5个括号都出1,即;(2)两个括号出,两个括号出,一个括号出1,即;(3)一个括号出,一个括号出,三个括号出1,即;所以展开项中的常数项为,故选B.【点睛】本题考查二项式定理知识的生成过程,考查定理的本质,即展开式中每一项是由每个括号各出一项相乘组合而成的.8、D【解析】

根据统计图中数据的含义进行判断即可.【详解】对A项,由统计图可得,2015年出口额和进口额基本相等,而2016年到2019年出口额都大于进口额,则A正确;对B项,由统计图可得,2015年出口额最少,则B正确;对C项,由统计图可得,2019年进口增速都超过其余年份,则C正确;对D项,由统计图可得,2015年到2016年出口增速是上升的,则D错误;故选:D【点睛】本题主要考查了根据条形统计图和折线统计图解决实际问题,属于基础题.9、D【解析】

因为要对600个零件进行编号,所以编号必须是三位数,因此按要求从第6行第6列开始向右读取数据,大于600的,重复出现的舍去,直至得到第六个编号.【详解】从第6行第6列开始向右读取数据,编号内的数据依次为:,因为535重复出现,所以符合要求的数据依次为,故第6个数据为578.选D.【点睛】本题考查了随机数表表的应用,正确掌握随机数表法的使用方法是解题的关键.10、A【解析】

由复数除法求出,再由模的定义计算出模.【详解】.故选:A.【点睛】本题考查复数的除法法则,考查复数模的运算,属于基础题.11、C【解析】

由三视图还原原几何体,借助于正方体可得三棱锥的表面中直角三角形的个数.【详解】由三视图还原原几何体如图,其中,,为直角三角形.∴该三棱锥的表面中直角三角形的个数为3.故选:C.【点睛】本小题主要考查由三视图还原为原图,属于基础题.12、A【解析】

设点,则点,,利用向量数量积的坐标运算可得,利用二次函数的性质可得最值.【详解】解:设点,则点,,,,当时,取最小值,最小值为.故选:A.【点睛】本题考查抛物线背景下的向量的坐标运算,考查学生的计算能力,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

设双曲线的左焦点为,连接,由于.所以四边形为矩形,故,由双曲线定义可得,再求的值域即可.【详解】如图,设双曲线的左焦点为,连接,由于.所以四边形为矩形,故.在中,由双曲线的定义可得,.故答案为:【点睛】本题考查双曲线定义及其性质,涉及到求余弦型函数的值域,考查学生的运算能力,是一道中档题.14、【解析】试题分析:由已知得,故的展开式中x的奇数次幂项分别为,,,,,其系数之和为,解得.考点:二项式定理.15、8【解析】

利用的代换,将写成,然后根据基本不等式求解最小值.【详解】因为(即取等号),所以最小值为.【点睛】已知,求解()的最小值的处理方法:利用,得到,展开后利用基本不等式求解,注意取等号的条件.16、①③④【解析】

先利用导数求得曲线在点处的切线方程,由此求得与的递推关系式,进而证得数列是等比数列,由此判断出四个结论中正确的结论编号.【详解】∵,∴曲线在点处的切线方程为,则.∵,∴,则是首项为1,公比为的等比数列,从而,,.故所有正确结论的编号是①③④.故答案为:①③④【点睛】本小题主要考查曲线的切线方程的求法,考查根据递推关系式证明等比数列,考查等比数列通项公式和前项和公式,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】

(1)取中点R,连接,,可知中,且,由Q是中点,可得则有且,即四边形是平行四边形,则有,即证得平面.(2)建立空间直角坐标系,求得半平面的法向量:,然后利用空间向量的相关结论可求得二面角的余弦值.【详解】(1)取中点R,连接,,则在中,,且,又Q是中点,所以,而且,所以,所以四边形是平行四边形,所以,又平面,平面,所以平面.(2)在平面内作交于点G,以E为原点,,,分别为x,y,x轴,建立如图所示的空间直角坐标系,则各点坐标为,,,所以,,设平面的一个法向量为,则即,取,得,又平面的一个法向量为,所以.因此,二面角的余弦值为【点睛】本题考查线面平行的判定,考查利用空间向量求解二面角,考查逻辑推理能力及运算求解能力,难度一般.18、(1)列联表见解析,99%;(2),;(3)第二种优惠方案更划算.【解析】

(1)根据已知数据得出列联表,再根据独立性检验得出结论;(2)有数据可知,女性中“手机支付族”的概率为,知服从二项分布,即,可求得其期望和方差;(3)若选方案一,则需付款元,若选方案二,设实际付款元,,则的取值为1200,1080,1020,求出实际付款的期望,再比较两个方案中的付款的金额的大小,可得出选择的方案.【详解】(1)由已知得出联列表:,所以,有99%的把握认为“手机支付族”与“性别”有关;(2)有数据可知,女性中“手机支付族”的概率为,,;(3)若选方案一,则需付款元若选方案二,设实际付款元,,则的取值为1200,1080,1020,,,,选择第二种优惠方案更划算【点睛】本题考查独立性检验,二项分布的期望和方差,以及由期望值确定决策方案,属于中档题.19、(1)或;(2)或.【解析】试题分析:(1)根据绝对值定义将不等式化为三个不等式组,分别求解集,最后求并集(2)根据绝对值三角不等式得最小值,再解含绝对值不等式可得的取值范围.试题解析:(1)等价于或或,解得:或.故不等式的解集为或.(2)因为:所以,由题意得:,解得或.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.20、,概率为;列联表详见解析,有的把握认为交通安全意识与性别有关;.【解析】

根据频率和为列方程求得的值,计算得分在分以上的频率即可;根据题意填写列联表,计算的值,对照临界值得出结论;用分层抽样法求得抽取各分数段人数,用列举法求出基本事件数,计算所求的概率值.【详解】解:解得.所以,该城市驾驶员交通安全意识强的概率根据题意可知,安全意识强的人数有,其中男性为人,女性为人,填写列联表如下:安全意识强安全意识不强合计男性女性合计所以有的把握认为交通安全意识与性别有关.由题意可知分数在,的分别为名和名,所以分层抽取的人数分别为名和名,设的为,,的为,,,,则基本事件空间为,,,,,,,,,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论