云南省楚雄彝族自治州大姚第一中学2025届高二上数学期末统考模拟试题含解析_第1页
云南省楚雄彝族自治州大姚第一中学2025届高二上数学期末统考模拟试题含解析_第2页
云南省楚雄彝族自治州大姚第一中学2025届高二上数学期末统考模拟试题含解析_第3页
云南省楚雄彝族自治州大姚第一中学2025届高二上数学期末统考模拟试题含解析_第4页
云南省楚雄彝族自治州大姚第一中学2025届高二上数学期末统考模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省楚雄彝族自治州大姚第一中学2025届高二上数学期末统考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.双曲线的左右焦点分别是,,直线与双曲线在第一象限的交点为,在轴上的投影恰好是,则双曲线的离心率是()A. B.C. D.2.若圆与圆相外切,则的值为()A. B.C.1 D.3.已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=()A.2 B.3C.6 D.94.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是A.y与x具有正的线性相关关系B.回归直线过样本点中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg5.某市物价部门对5家商场的某商品一天的销售量及其售价进行调查,5家商场的售价(元)和销售量(件)之间的一组数据如表所示.按公式计算,与的回归直线方程是,则下列说法错误的是()售价99.51010.511销售量1110865A.B.售价变量每增加1个单位时,销售变量大约减少3.2个单位C.当时,的估计值为12.8D.销售量与售价成正相关6.过点且垂直于直线的直线方程是()A. B.C. D.7.在平面几何中,将完全覆盖某平面图形且直径最小的圆,称为该平面图形的最小覆盖圆.如线段的最小覆盖圆就是以该线段为直径的圆,锐角三角形的最小覆盖圆就是该三角形的外接圆.若,,,则的最小覆盖圆的半径为()A. B.C. D.8.若双曲线的渐近线方程为,则实数a的值为()A B.C.2 D.9.南宋数学家杨辉所著的《详解九章算法》中有如下俯视图所示的几何体,后人称之为“三角垛”.其最上层有1个球,第二层有3个球,第三层有6个球,…,则第十层球的个数为()A.45 B.55C.90 D.11010.已知正四面体的底面的中心为为的中点,则直线与所成角的余弦值为()A. B.C. D.11.已知点O为坐标原点,抛物线C:的焦点为F,点T在抛物线C的准线上,线段FT与抛物线C的交点为W,,则()A.1 B.C. D.12.已知正项等比数列的前项和为,且,则的最小值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.机动车驾驶考试是为了获得机动车驾驶证的考试,采用全国统一的考试科目内容及合格标准,包括科目一理论考试、科目二场地驾驶技能考试、科目三道路驾驶技能考试和科目四安全文明常识考试共四项考试,考生应依次参加四项考试,前一项考试合格后才能报名参加后一项考试,考试不合格则需另行交费预约再次补考.据公安部门通报,佛山市四项考试的合格率依次为,,,,且各项考试是否通过互不影响,则一位佛山公民通过驾考四项考试至多需要补考一次的概率为______14.围棋是一种策略性两人棋类游戏.已知某围棋盒子中有若干粒黑子和白子,从盒子中取出2粒棋子,2粒都是黑子的概率为,2粒恰好是同一色的概率比不同色的概率大,则2粒恰好都是白子的概率是______15.欧阳修在《卖油翁》中写道:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿,可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为4cm的圆,中间有边长为1cm的正方形孔,若你随机地向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率是_______16.我国南北朝时期的数学家祖暅提出了一个原理“幂势既同,则积不容异”,即夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.现有某几何体和一个圆锥满足祖暅原理的条件,若该圆锥的侧面展开图是一个半径为2的半圆,则该几何体的体积为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆过点,离心率为(1)求椭圆的标准方程;(2)过椭圆的上顶点作直线l交抛物线于A,B两点,O为坐标原点①求证:;②设OA,OB分别与椭圆相交于C,D两点,过点O作直线CD的垂线OH,垂足为H,证明:为定值18.(12分)如图,在三棱锥A-BCD中,O为线段BD中点,是边长为1正三角形,且OA⊥BC,AB=AD(1)证明:平面ABD⊥平面BCD;(2)若|OA|=1,,求平面BCE与平面BCD的夹角的余弦值19.(12分)已知函数(1)求曲线在点(e,)的切线方程;(2)求函数的单调区间.20.(12分)已知等差数列满足,.(1)求的通项公式;(2)设,求数列的前项和.21.(12分)已知双曲线:的两条渐近线所成的锐角为且点是上一点(1)求双曲线的标准方程;(2)若过点的直线与交于,两点,点能否为线段的中点?并说明理由22.(10分)已知抛物线C的对称轴是y轴,点在曲线C上.(1)求抛物线的标准方程;(2)过抛物线焦点的倾斜角为直线l与抛物线交于A、B两点,求线段AB的长度.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据题意的到,,代入到双曲线方程,解得,即,则,即,即,求解方程即可得到结果.【详解】设原点为,∵直线与双曲线在第一象限的交点在轴上的投影恰好是,∴,且,∴,将代入到双曲线方程,可得,解得,即,则,即,即,解得(舍负),故.故选:D.2、D【解析】确定出两圆的圆心和半径,然后由两圆的位置关系建立方程求解即可.【详解】由可得,所以圆的圆心为,半径为,由可得,所以圆的圆心为,半径为,因为两圆相外切,所以,解得,故选:D3、C【解析】利用抛物线的定义建立方程即可得到答案.【详解】设抛物线的焦点为F,由抛物线的定义知,即,解得.故选:C.【点晴】本题主要考查利用抛物线的定义计算焦半径,考查学生转化与化归思想,是一道容易题.4、D【解析】根据y与x的线性回归方程为y=0.85x﹣85.71,则=0.85>0,y与x具有正的线性相关关系,A正确;回归直线过样本点的中心(),B正确;该大学某女生身高增加1cm,预测其体重约增加0.85kg,C正确;该大学某女生身高为170cm,预测其体重约为0.85×170﹣85.71=58.79kg,D错误故选D5、D【解析】首先求出、,再根据回归直线方程必过样本中心点,即可求出,再根据回归直线方程的性质一一判断即可;【详解】解:因为,,与回归直线方程,恒过定点,,解得,故A正确,所以回归直线方程为,即售价变量每增加1个单位时,销售变量大约减少3.2个单位,故B正确;当时,即当时,的估计值为12.8,故C正确;因为回归直线方程为,所以销售量与售价成负相关,故D错误;故选:D6、A【解析】根据所求直线垂直于直线,设其方程为,然后将点代入求解.【详解】因为所求直线垂直于直线,所以设其方程为,又因为直线过点,所以,解得所以直线方程为:,故选:A.7、C【解析】根据新定义只需求锐角三角形外接圆的方程即可得解.【详解】,,,为锐角三角形,的外接圆就是它的最小覆盖圆,设外接圆方程为,则解得的最小覆盖圆方程为,即,的最小覆盖圆的半径为.故选:C8、D【解析】由双曲线的渐近线方程结合已知可得.【详解】双曲线方程为所以渐近线为,故,解得:.故选:D9、B【解析】根据题意,发现规律并将规律表达出来,第层有个球.【详解】根据规律,可以得知:第一层有个球;第二层有个球;第三层有个球,则根据规律可知:第层有个球设第层的小球个数为,则有:故第十层球的个数为:故选:10、B【解析】连接,再取中点,连接,得到为直线与所成角,再解三角形即可.【详解】连接,再取中点,连接,因为分别为VC,中点,则,且底面,所以为直线与所成角,令正四面体边长为1,则,,,所以,故选:.11、B【解析】根据平面向量共线的性质,结合抛物线的定义进行求解即可.【详解】由已知得:,该抛物线的准线方程为:,所以设,因为,所以,由抛物线的定义可知:,故选:B12、B【解析】设等比数列的公比为,则,由可得,可得出,利用基本不等式可求得结果.【详解】设等比数列的公比为,则,因为,则,所以,,则,当且仅当时,等号成立.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】至多需要补考一次,分5种情况分别计算后再求和即可.【详解】不需要补考就通过的概率为;仅补考科目一就通过的概率为;仅补考科目二就通过的概率为;仅补考科目三就通过的概率为;仅补考科目三就通过的概率为,一位佛山公民通过驾考四项考试至多需要补考一次的概率为.故答案为:14、【解析】根据互斥事件与对立事件概率公式求解即可【详解】设“2粒都是黑子”为事件,“2粒都是白子”为事件,“2粒恰好是同一色”为事件,“2粒不同色”为事件,则事件与事件是对立事件,所以因为2粒恰好是同一色的概率比不同色的概率大,所以,所以,又,且事件与互斥,所以,所以故答案为:15、【解析】分别求出圆和正方形的面积,结合几何概型的面积型计算公式进行求解即可.【详解】因为铜钱的面积为,正方形孔的面积为,所以随机地向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率是.故答案为:【点睛】本题考查了几何概型计算公式,考查了数学运算能力,属于基础题.16、【解析】根据圆锥的侧面展开图是一个半径为2的半圆,由,求得底面半径,进而得到高,再利用锥体的体积公式求解.【详解】设圆锥的母线长为l,高为h,底面半径为r,因为圆锥的侧面展开图是一个半径为2的半圆,所以,解得,所以,所以圆锥的体积为:,故该几何体的体积为,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)①证明见解析;②证明见解析【解析】(1)根据离心率及过点求出求解即可;(2)①设直线l的方程为,利用向量的数量积计算证明即可;②设直线CD方程为,利用求出,再由点O到直线CD的距离即可求证.【小问1详解】因为,所以,又因为,解得,,所以椭圆的方程为;【小问2详解】①证明:设,,依题意,直线l斜率存在,设直线l的方程为,联立方程,消去y得,所以,又因为,所以,因此,②证明:设,,设直线CD方程为,因为,所以,则,联立,得当时,,则所以,即满足则,即为定值18、(1)证明见解析(2)【解析】(1)由题意可得OA⊥平面BCD,从而可证明.(2)作OF⊥BD交BC于点F,如图,以O为坐标原点,分别以OF,OD,OA所在直线轴建立空间直角坐标系,利用向量法可求解.【小问1详解】因为AB=AD,O为BD中点,所以OA⊥BD因为OA⊥BC,且BD,BC平面BCD,BD∩BC=B,所以OA⊥平面BCD又因为OA平面ABD,所以平面ABD⊥平面BCD【小问2详解】作OF⊥BD交BC于点F,如图,以O为坐标原点,分别以OF,OD,OA所在直线轴建立空间直角坐标系因为三角形OCD为边长为1的正三角形,且OA=OB=1,DE=2AE所以A(0,0,1),B(0,-1,0),设平面EBC的法向量为=()因为⊥BE,⊥BC,所以令,则,,所以已知平面BCD的法向量所以所以平面EBC与平面BCD的夹角的余弦值为19、(1);(2)在单调递减,在单调递增【解析】(1)求出函数的导数,求出切线的斜率,切点坐标,然后求解切线方程;(2)利用导函数的符号,判断函数的单调性,求解函数的单调区间即可【详解】解:(1)由得,所以切线斜率为切点坐标为,所以切线方程为,即;(2),令,得当时,;当时,,∴在单调递减,在单调递增20、(1);(2).【解析】(1)设等差数列的公差为,根据题意可得出关于、的方程组,解出这两个量的值,可得出数列的通项公式;(2)求得,利用裂项法可求得.【小问1详解】解:设等差数列的公差为,则,可得,由可得,即,解得,,故.【小问2详解】解:,因此,.21、(1);(2)点不能为线段的中点,理由见解析.【解析】(1)由渐近线夹角求得一个斜率,再代入点的坐标,然后可解得得双曲线方程;(2)设直线方程为(斜率不存在时另说明),与双曲线方程联立,消元后应用韦达定理,结合中点坐标公式求得,然后难验证直线与双曲线是否相交即可得【详解】解:(1)由题意知,双曲线的渐近线的倾斜角为30°或60°,即或当时,的标准方程为,代入,无解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论