版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省无锡市洛社初级中学2025届高一数学第一学期期末综合测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知集合,则A. B.C. D.2.已知函数,则下列选项中正确的是()A.函数是单调增函数B.函数的值域为C.函数为偶函数D.函数的定义域为3.定义在上的函数满足,当时,,当时,.则=()A.338 B.337C.1678 D.20134.设:,:,则是的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件5.已知函数,若存在互不相等的实数,,满足,则的取值范围是()A. B.C. D.6.A. B.C.1 D.7.已知函数的图象的对称轴为直线,则()A. B.C. D.8.直线l过点,且与以为端点的线段相交,则直线l的斜率的取值范围是()A. B.C. D.9.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片的数字之积为偶数的概率为()A. B.C. D.10.将函数的图象沿轴向右平移个单位后,得到的函数图象关于轴对称,则的值可以是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知甲运动员的投篮命中率为0.7,乙运动员的投篮命中率为0.8,若甲、乙各投篮一次,则恰有一人命中的概率是___________12.函数是定义在上的奇函数,当时,,则______13.16、17世纪之交,随着天文、航海、工程、贸易以及军事的发展,改进数字计算方法成了当务之急,数学家纳皮尔在研究天文学的过程中,为简化计算发明了对数.直到18世纪,才由瑞士数学家欧拉发现了指数与对数的互逆关系,即.现在已知,则__________14.若函数有4个零点,则实数a的取值范围为___________.15.已知函数,,对任意,总存在使得成立,则实数a的取值范围是_________.16.计算=_______________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,,设(其中表示中的较小者).(1)在坐标系中画出函数的图像;(2)设函数的最大值为,试判断与1的大小关系,并说明理由.(参考数据:,,)18.已经函数(Ⅰ)函数的图象可由函数的图象经过怎样变化得出?(Ⅱ)求函数的最小值,并求使用取得最小值的的集合19.已知向量,1若
,共线,求x的值;2若,求x的值;3当时,求与夹角的余弦值20.刘先生购买了一部手机,欲使用某通讯网络最近推出的全年免流量费用的套餐,经调查收费标准如下表:套餐月租本地话费长途话费套餐甲12元0.3元/分钟0.6元/分钟套餐乙无0.5元/分钟0.8元/分钟刘先生每月接打本地电话时间是长途电话的5倍(手机双向收费,接打话费相同)(1)设刘先生每月通话时间为x分钟,求使用套餐甲所需话费的函数及使用套餐乙所需话费的函数;21.若函数的自变量的取值范围为时,函数值的取值范围恰为,就称区间为的一个“和谐区间”.(1)先判断“函数没有“和谐区间”是否正确,再写出函数“和谐区间”;(2)若是定义在上的奇函数,当时,.(i)求的“和谐区间”;(ii)若函数的图象是在定义域内所有“和谐区间”上的图象,是否存在实数,使集合恰含有个元素,若存在,求出的取值范围;若不存在,请说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】分别解集合A、B中的不等式,再求两个集合的交集【详解】集合,集合,所以,选择C【点睛】进行集合的交、并、补运算前,要搞清楚每个集合里面的元素种类,以及具体的元素,再进行运算2、D【解析】应用换元法求的解析式,进而求其定义域、值域,并判断单调性、奇偶性,即可知正确选项.【详解】由题意,由,则,即.令,则∴,其定义域为不是偶函数,又故不单调增函数,易得,则,∴.故选:D3、B【解析】,,即函数是周期为的周期函数.当时,,当时,.,,故本题正确答案为4、B【解析】解出不等式,根据集合的包含关系,可得到答案.【详解】解:因为:,所以:或,因为:,所以是的充分不必要条件.故选:B【点睛】本题考查了充分不必要条件的判断,两个命题均是范围形式,解决问题常见的方法是判断出集合之间包含关系.5、D【解析】作出函数的图象,根据题意,得到,结合图象求出的范围,即可得出结果.【详解】假设,作出的图象如下;由,所以,则令,所以,由,所以,所以,故.故选:D.【点睛】方法点睛:已知函数零点个数(方程根的个数)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.6、A【解析】由题意可得:本题选择A选项.7、A【解析】根据二次函数的图像的开口向上,对称轴为,可得,且函数在上递增,再根据函数的对称性以及单调性即可求解.【详解】二次函数的图像的开口向上,对称轴为,且函数在上递增,根据二次函数的对称性可知,又,所以,故选:A【点睛】本题考查了二次函数的单调性以及对称性比较函数值的大小,属于基础题.8、D【解析】作出图形,并将直线l绕着点M进行旋转,使其与线段PQ相交,进而得到l斜率的取值范围.【详解】∵直线l过点,且与以,为端点的线段相交,如图所示:∴所求直线l的斜率k满足或,,则或,∴,故选:D9、D【解析】从4张卡片上分别写有数字1,2,3,4中随机抽取2张的基本事件有:12,13,14,23,24,34,一共6种,其中数字之积为偶数的有:12,14,23,24,34一共有5种,所以取出的2张卡片的数字之积为偶数的概率为,故选:D10、C【解析】首先求平移后的解析式,再根据函数关于轴对称,当时,,求的值.【详解】函数的图象沿轴向右平移个单位后的解析式是,若函数图象关于轴对称,当时,,解得:,当时,.故选:C【点睛】本题考查函数图象变换,以及根据函数性质求参数的取值,意在考查基本知识,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、38##【解析】利用相互独立事件概率乘法公式及互斥事件概率计算公式即求.【详解】∵甲运动员的投篮命中率为0.7,乙运动员的投篮命中率为0.8,∴甲、乙各投篮一次,则恰有一人命中的概率是.故答案为:0.38.12、11【解析】根据奇函数性质求出函数的解析式,然后逐层代入即可.【详解】,,当时,,即,,,故答案为:11.13、3【解析】由将对数转化为指数14、【解析】将函数转化为方程,作出的图像,结合图像分析即可.【详解】令得,作出的函数图像,如图,因为有4个零点,所以直线与的图像有4个交点,所以.故答案为:15、【解析】根若对于任意的∈,总存在,使得g(x0)=f(x1)成立,得到函数f(x)在上值域是g(x)在上值域的子集,然后利用求函数值域之间的关系列出不等式,解此不等式组即可求得实数a的取值范围即可【详解】∵,∴f(0)≤f(x)≤f(1),即0≤f(x)≤4,即函数f(x)的值域为B=[0,4],若对于任意的∈,总存在,使得g(x0)=f(x1)成立,则函数f(x)在上值域是g(x)在上值域A的子集,即B⊆A①若a=0,g(x)=0,此时A={0},不满足条件②当a≠0时,在是增函数,g(x)∈[﹣+3a,],即A=[﹣+3a,],则,∴综上,实数a的取值范围是故答案为【点睛】本题主要考查了函数恒成立问题,以及函数的值域,同时考查了分类讨论的数学思想,属于中档题16、【解析】原式考点:三角函数化简与求值三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析.【解析】(1)根据(其中表示中的较小者),即可画出函数的图像;(2)由题意可知,为函数与图像交点的横坐标,即,设,根据零点存在定理及函数在上单调递增,且为连续曲线,可得有唯一零点,再由函数在上单调递减,即可得证.试题解析:(1)作出函数的图像如下:(2)由题意可知,为函数与图像交点的横坐标,且,∴.设,易知即为函数零点,∵,,∴,又∵函数在上单调递增,且为连续曲线,∴有唯一零点∵函数在上单调递减,∴,即.18、(Ⅰ)答案见解析;(Ⅱ)最小值,对应的x的集合为.【解析】(Ⅰ)由二倍角公式降幂后,用诱导公式化正弦函数,再由图象平移得结论;(Ⅱ)利用两角和的余弦公式化函数为一个角的余弦型函数,利用余弦函数的性质得最值【详解】解:(Ⅰ),所以要得到的图象只需要把的图象向左平移个单位长度,再将所得的图象向上平移个单位长度即可.(Ⅱ).当2x+=2k+时,h(x)取得最小值.取得最小值时,对应的x的集合为.19、(1);(2);(3)【解析】(1)根据题意,由向量平行的坐标公式可得,解可得的值,即可得答案;(2)若,则有,利用数量积的坐标运算列方程,解得的值即可;(3)根据题意,由的值可得的坐标,由向量的坐标计算公式可得和的值,结合,计算可得答案【详解】根据题意,向量,,若,则有,解可得若,则有,又由向量,,则有,即,解可得.根据题意,若,则有,,【点睛】本题主要考查两个向量共线、垂直的性质,两个向量坐标形式的运算,两个向量夹角公式的应用,属于中档题20、(1),;(2)答案见解析.【解析】(1)由题可知他每月接打本地电话时间为,接打长途,结合条件即得;(2)利用作差法,然后分类讨论即得.【小问1详解】因为刘先生每月接打本地电话时间是长途电话的5倍,所以他每月接打本地电话时间为,接打长途若选择套餐甲,则月租12元,本地话费,长途话费,则;若选择套餐乙,则月租0元,本地话费,长途话费,则【小问2详解】∵,当时,即时,,此时应选择套餐乙省钱;当时,即时,,此时应选择套餐甲省钱;当时,即时,,此时甲乙两种套餐话费一样21、(1)正确,;(2)(i)和,(ii)存在符合题意,理由见解析.【解析】(1)根据和谐区间的定义判断两个函数即可;(2)(i)根据是奇函数求出的解析式,再利用“和谐区间”的定义求出的“和谐区间”,(ii)由(i)可得的解析式,由与都是奇函数,问题转化为与的图象在第一象限内有一个交点,由单调性求出的端点坐标,代入可得临界值即可求解.【小问1详解】函数定义域为,且为奇函数,当时,单调递减,任意的,则,所以时,没有“和谐区间”,同理时,没有“和谐区间”,所以“函数没有“和谐区间”是正确的,在上单调递减,所以在上单调递减,所以值域为,即,所以,所以,是方程的两根,因为,解得,所以函数的“和谐区间”为.【小问2详解】(i)因为当时,所以当时,,所以因为是定义在上的奇函数,所以,所以当时,,可得,设,因为在上单调递减,所以,,所以,,所以,是方程的两个不相等的正数根,即,是方程的两个不相等的正数根,且,所以,,所以在区间上的“和谐区间”是,同理可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 挖掘机驾驶员合同范本格式模板示例
- 民间借款协议书借款合同
- 食品销售代理合同范本
- 水泥砖批量订购合同
- 庆典活动服务合同
- 会计事务处理协助合同
- 产品订购合约样本
- 面料购销合约
- 股份制公司合同范本
- 热处理生产线承包合同
- DB11T 854-2023 占道作业交通安全设施设置技术要求
- 高考生物选择性必修1稳态与调节基础知识填空默写(每天打卡)
- 2022版《义务教育教学新课程标准》解读课件
- 二级公立医院绩效考核三级手术目录(2020版)
- 6人小品《没有学习的人不伤心》台词完整版
- 《个人防护用品PPE》ppt课件
- 苏州商业市场市调简析报告
- 论现代企业人力资源管理中激励机制的应用以腾讯公司为例
- CRRT治疗剂量的计算
- (完整)风景园林概论知识点,推荐文档
- 水稳施工方案(完整版)
评论
0/150
提交评论