新疆奎屯市农七师高级中学2025届高二上数学期末质量检测模拟试题含解析_第1页
新疆奎屯市农七师高级中学2025届高二上数学期末质量检测模拟试题含解析_第2页
新疆奎屯市农七师高级中学2025届高二上数学期末质量检测模拟试题含解析_第3页
新疆奎屯市农七师高级中学2025届高二上数学期末质量检测模拟试题含解析_第4页
新疆奎屯市农七师高级中学2025届高二上数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新疆奎屯市农七师高级中学2025届高二上数学期末质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆,直线,则直线l被圆C所截得的弦长的最小值为()A.2 B.3C.4 D.52.已知,为椭圆上关于短轴对称的两点,、分别为椭圆的上、下顶点,设,、分别为直线,的斜率,则的最小值为()A. B.C. D.3.定义域为的函数满足,且的导函数,则满足的的集合为A. B.C. D.4.等比数列的各项均为正数,且,则=()A.8 B.16C.32 D.645.曲线上的点到直线的距离的最小值是()A.3 B.C.2 D.6.从全体三位正整数中任取一数,则此数以2为底的对数也是正整数的概率为()A. B.C. D.以上全不对7.下列关于命题的说法错误的是A.命题“若,则”的逆否命题为“若,则”B.“”是“函数在区间上为增函数”的充分不必要条件C.命题“,使得”的否定是“,均有”D.“若为的极值点,则”的逆命题为真命题8.已知定义在上的函数满足:,且,则的解集为()A. B.C. D.9.若,则的最小值为()A.1 B.2C.3 D.410.设数列的前项和为,数列是公比为2的等比数列,且,则()A.255 B.257C.127 D.12911.如图,在棱长为的正方体中,为线段的中点,为线段的中点,则直线到直线的距离为()A. B.C. D.12.已知点、为椭圆的左、右焦点,若点为椭圆上一动点,则使得的点的个数为()A. B.C. D.不能确定二、填空题:本题共4小题,每小题5分,共20分。13.设函数的导函数为,已知函数,则______.14.已知函数在处有极值2,则______.15.如图①,用一个平面去截圆锥,得到的截口曲线是椭圆.许多人从纯几何的角度出发对这个问题进行过研究,其中比利时数学家(1794-1847)的方法非常巧妙,极具创造性.在圆锥内放两个大小不同的球,使得它们分别与圆锥的侧面,截面相切,两个球分别与截面相切于,在截口曲线上任取一点,过作圆锥的母线,分别与两个球相切于,由球和圆的几何性质,可以知道,,于是.由的产生方法可知,它们之间的距离是定值,由椭圆定义可知,截口曲线是以为焦点的椭圆.如图②,一个半径为2的球放在桌面上,桌面上方有一个点光源,则球在桌面上的投影是椭圆.已知是椭圆的长轴,垂直于桌面且与球相切,,则椭圆的离心率为___________.16.双曲线的渐近线方程为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四棱锥中,平面、底面为菱形,为的中点.(1)证明:平面;(2)设,菱形的面积为,求二面角的余弦值.18.(12分)已知函数在处的切线与轴平行(1)求的值;(2)判断在上零点的个数,并说明理由19.(12分)在中,(1)求的大小;(2)若,.求的面积20.(12分)如图,ABCD是边长为2的正方形,DE⊥平面ABCD,AF∥DE,DE=2AF=2(1)证明:AC∥平面BEF;(2)求点C到平面BEF的距离21.(12分)已知动直线l:(m+3)x-(m+2)y+m=0与圆C:(x-3)2+(y-4)2=9(1)求证:无论m为何值,直线l与圆C总相交(2)m为何值时,直线l被圆C所截得的弦长最小?请求出该最小值22.(10分)已知函数.(1)当时,证明:存在唯一的零点;(2)若,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】直线l过定点D(1,1),当时,弦长最短.【详解】由,圆心,半径,,由,故直线l过定点,∵,故D在圆C内部,直线l始终与圆相交,当时,直线l被圆截得的弦长最短,,弦长=.故选:C.2、A【解析】设出点,的坐标,并表示出两个斜率、,把代数式转化成与点的坐标相关的代数式,再与椭圆有公共点解决即可.【详解】椭圆中:,设则,则,,令,则它对应直线由整理得由判别式解得即,则的最小值为故选:A3、B【解析】利用2f(x)<x+1构造函数g(x)=2f(x)-x-1,进而可得g′(x)=2f′(x)-1>0.得出g(x)的单调性结合g(1)=0即可解出【详解】令g(x)=2f(x)-x-1.因为f′(x)>,所以g′(x)=2f′(x)-1>0.所以g(x)单调增函数因为f(1)=1,所以g(1)=2f(1)-1-1=0.所以当x<1时,g(x)<0,即2f(x)<x+1.故选B.【点睛】本题主要考察导数的运算以及构造函数利用其单调性解不等式.属于中档题4、B【解析】由等比数列的下标和性质即可求得答案.【详解】由题意,,所以.故选:B.5、D【解析】求出函数的导函数,设切点为,依题意即过切点的切线恰好与直线平行,此时切点到直线的距离最小,求出切点坐标,再利用点到直线的距离公式计算可得;【详解】解:因为,所以,设切点为,则,解得,所以切点为,点到直线的距离,所以曲线上的点到直线的距离的最小值是;故选:D6、B【解析】利用古典概型的概率求法求解.【详解】从全体三位正整数中任取一数共有900种取法,以2为底的对数也是正整数的三位数有,共3个,所以以此数以2为底的对数也是正整数的概率为,故选:B7、D【解析】根据命题及其关系、充分条件与必要条件、导数在函数中应用、全称量词与存在量词等相关知识一一判断可得答案.【详解】解:A,由原命题与逆否命题的构成关系,可知A正确;B,当a=2>1时,函数在定义域内是单调递增函数,当函数定义域内是单调递增函数时,a>1.所以B正确;C,由于存在性命题的否定是全称命题,所以",使得"的否定是",均有,所以C正确;D,的根不一定是极值点,例如:函数,则=0,即x=0就不是极值点,所以“若为的极值点,则”的逆命题为假命题,故选D.【点睛】本题主要考查命题及其关系、充分条件与必要条件、导数在函数中应用、全称量词与存在量词等相关知识,需牢记并灵活运用相关知识.8、A【解析】令,利用导数可判断其单调性,从而可解不等式.【详解】设,则,故为上的增函数,而可化为即,故即,所以不等式的解集为,故选:A.9、D【解析】由基本不等式求解即可.【详解】,当且仅当时,取等号.即所求最小值.故选:D10、C【解析】由题设可得,再由即可求值.【详解】由数列是公比为2的等比数列,且,∴,即,∴.故选:C.11、C【解析】连接,,,,在平面中,作,为垂足,将两平行线的距离转化成点到直线的距离,结合余弦定理即同角三角函数基本关系,求得,因此可得,进而可得直线到直线的距离;【详解】解:如图,连接,,,,在平面中,作,为垂足,因为,分别为,的中点,因为,,所以,所以,同理,所以四边形是平行四边形,所以,所以即为直线到直线的距离,在三角形中,由余弦定理得因为,所以是锐角,所以,在直角三角形中,,故直线到直线的距离为;故选:C12、B【解析】利用余弦定理结合椭圆的定义可求得、,即可得出结论.【详解】在椭圆中,,,,则,,可得,所以,,解得,此时点位于椭圆短轴的顶点.因此,满足条件的点的个数为.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】首先求出函数的导函数,再令代入计算可得;【详解】解:因为,所以,所以,解得;故答案为:14、6【解析】根据函数在处有极值2,可得,解方程组即可得解.【详解】解:,因为函数在处有极值2,所以,即,解得,则,故当时,,当时,,所以函数在处有极大值,所以,所以.故答案为:6.15、##0.5【解析】利用球与圆锥相切,得出截面,在平面图形中求解,以及圆锥曲线的来源来理解切点为椭圆的一个焦点,求出,得出离心率.【详解】设球切于,切于E,,球半径为2,所以,,∴,又中,,,故椭圆长轴长为,,根据椭圆在圆锥中截面与二球相切的切点为椭圆的焦点知:球O与相切的切点为椭圆的一个焦点,且,,椭圆的离心率为.故答案:.16、【解析】将双曲线方程化成标准方程,得到且,利用双曲线渐近线方程,可得结果【详解】把双曲线化成标准方程为,且,双曲线的渐近线方程为,即故答案为【点睛】本题主要考查利用双曲线的方程求渐近线方程,意在考查对基础知识的掌握情况,属于基础题.若双曲线方程为,则渐近线方程为;若双曲线方程为,则渐近线方程为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)连接交于点,连接,则,利用线面平行的判定定理,即可得证;(2)根据题意,求得菱形的边长,取中点,可证,如图建系,求得点坐标及坐标,即可求得平面的法向量,根据平面PAD,可求得面的法向量,利用空间向量的夹角公式,即可求得答案.【详解】(1)连接交于点,连接,则、E分别为、的中点,所以,又平面平面所以平面(2)由菱形的面积为,,易得菱形边长为,取中点,连接,因为,所以,以点为原点,以方向为轴,方向为轴,方向为轴,建立如图所示坐标系.则所以设平面的法向量,由得,令,则所以一个法向量,因为,,所以平面PAD,所以平面的一个法向量所以,又二面角为锐二面角,所以二面角的余弦值为【点睛】解题的关键是熟练掌握证明平行的定理,证明线面平行时,常用中位线法和平行四边形法来证明;利用空间向量求解二面角为常考题型,步骤为建系、求点坐标、求所需向量坐标、求法向量、利用夹角公式求解,属基础题.18、(1)0(2)f(x)在(0,π)上有且只有一个零点,理由见解析【解析】(1)利用导数的几何意义求解;(2)由,可得,令,,,,利用导数法求解.【小问1详解】解:,所以k=f′(0)=-a=0,所以a=0;【小问2详解】由,可得,令,,所以,①当时,sinx+cosx≥1,ex>1,所以g′(x)>0,所以g(x)在上单调递增,又因为g(0)=0,所以g(x)在上无零点;②当时,令,所以h′(x)=2cosxex<0,即h(x)在上单调递减,又因为,h(π)=-eπ-1<0,所以存在,,所以g(x)在上单调递增,在上单调递减,因为,g(π)=-π<0,所以g(x)在上且只有一个零点;综上所述:f(x)在(0,π)上有且只有一个零点19、(1)(2)【解析】(1)利用正弦定理将边化角,再根据两角和的正弦公式及诱导公式得到,即可得解;(2)首先由余弦定理求出,即可得到,再根据面积公式计算可得;【小问1详解】解:因为,由正弦定理可得,即,又在中,,所以,,所以;【小问2详解】解:由余弦定理得,即,解得,所以,又,所以;.20、(1)证明见解析(2)【解析】(1)建立空间直角坐标系,进而求出平面BEF的法向量,然后证明线面平行;(2)算出在向量方向上的投影,进而求得答案.【小问1详解】因为DE⊥平面ABCD,DA、DC平面ABCD,所以DE⊥DA,DE⊥DC,因为ABCD是正方形,所以DA⊥DC.以D为坐标原点,所在方向分别为轴的正方向建立空间直角坐标系,则A(2,0,0),C(0,2,0),B(2,2,0),E(0,0,2),F(2,0,1),所以,,设平面BEF的法向量,因为,所以-2x-2y+2z=0,-2y+z=0,令y=1,则=(1,1,2),又因为=(-2,2,0),所以,即,而平面BEF,所以AC∥平面BEF.【小问2详解】设点C到平面BEF的距离为d,而,所以,所以点C到平面BEF的距离为21、(1)详见解析(2)m为-时,截得的弦长最小,最小值为2【解析】(1)将直线l变形,可知直线l过定点,证明定点在圆内部;(2)利用垂径定理和弦长公式可得.【详解】(1)证明:直线l变形为m(x-y+1)+(3x-2y)=0令解得,如图所示,故动直线l恒过定点A(2,3)而|AC|==<3(半径)∴点A在圆内,故无论m取何值,直线l与圆C总相交(2)解:由平面几何知识知,弦心距越大,弦长越小,即当AC垂直直线l时,弦长最小,此时kl·kAC=-1,即,∴m=-最小值为故m为-时,直线l被圆C所截得的弦长最小,最小值为2【点睛】考查直线过定点、点与圆的位置关系以及弦长问题,解题的关键是直线系形式的转化.22、(1)证明见解析;(2)【解析】(1)当时,求导得到,判断出函数的单调性,求出最值,可证得命题成立;(2)当且时,不满足题意,故,又定义域为,讲不等式化简,参变分离后构造新函数,求导判断单调性并求出最值,可得实数的取值范围【详解】(1)函数的定义域为,当时,由,当时,,单调递减;当时,,单调递增;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论