压轴题04圆的综合(原卷版+解析)_第1页
压轴题04圆的综合(原卷版+解析)_第2页
压轴题04圆的综合(原卷版+解析)_第3页
压轴题04圆的综合(原卷版+解析)_第4页
压轴题04圆的综合(原卷版+解析)_第5页
已阅读5页,还剩69页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

圆的综合圆的综合问题在中考中常常以选择题以及解答题的形式出现,解答题居多且分值较大,难度较高.多考查切线的性质与判定、圆中求线段长度问题和圆中最值问题,一般会用到特殊三角形、特殊四边形、相似三角形、锐角三角函数、勾股定理、图形变换等相关知识点,以及数形结合、整体代入等数学思想.此类题型常涉及以下问题:①切线的判定;②计算线段长及证明线段比例关系;③求三角函数值;④利用“辅助圆”求最值.右图为圆的综合问题中各题型的考查热度.题型1:切线的判定解题模板:1.(2022•阜新)如图,在Rt△ABC中,∠ACB=90°,O是BC边上一点,以O为圆心,OB为半径的圆与AB相交于点D,连接CD,且CD=AC.求证:CD是⊙O的切线;【变式1-1】(2022•鄂尔多斯)如图,以AB为直径的⊙O与△ABC的边BC相切于点B,且与AC边交于点D,点E为BC中点,连接DE、BD.求证:DE是⊙O的切线;【变式1-2】(2022•荆门)如图,AB为⊙O的直径,点C在直径AB上(点C与A,B两点不重合),OC=3,点D在⊙O上且满足AC=AD,连接DC并延长到E点,使BE=BD.(1)求证:BE是⊙O的切线;题型2:圆中求线段长度解题模板:2.(2022•西宁)如图,在Rt△ABC中,∠C=90°,点D在AB上,以BD为直径的⊙O与AC相切于点E,交BC于点F,连接DF,OE交于点M.(1)求证:四边形EMFC是矩形;(2)若AE=,⊙O的半径为2,求FM的长.【变式2-1】(2022•盘锦)如图,四边形ABCD是正方形,点A,点B在⊙O上,边DA的延长线交⊙O于点E,对角线DB的延长线交⊙O于点F,连接EF并延长至点G,使∠FBG=∠FAB.(1)求证:BG与⊙O相切;(2)若⊙O的半径为1,求AF的长.【变式2-2】(2022•聊城)如图,点O是△ABC的边AC上一点,以点O为圆心,OA为半径作⊙O,与BC相切于点E,交AB于点D,连接OE,连接OD并延长交CB的延长线于点F,∠AOD=∠EOD.(1)连接AF,求证:AF是⊙O的切线;(2)若FC=10,AC=6,求FD的长.题型3:圆中的最值问题解题模板:技巧精讲:辅助圆模型3.(碑林区校级模拟)问题提出:(1)如图①,半圆O的直径AB=10,点P是半圆O上的一个动点,则△PAB的面积最大值是.问题探究:(2)如图②,在边长为10的正方形ABCD中,点G是BC边的中点,E、F分别是AD和CD边上的点,请探究并求出四边形BEFG的周长的最小值.问题解决:(3)如图③,四边形ABCD中,AB=AD=6,∠BAD=60°,∠BCD=120°,四边形ABCD的周长是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.【变式3-1】(2022秋•南关区校级期末)【问题情境】如图①,在四边形ABCD中,∠B=∠D=90°,求证:A、B、C、D四点共圆.小吉同学的作法如下:连结AC,取AC的中点O,连结OB、OD,请你帮助小吉补全余下的证明过程;【问题解决】如图②,在正方形ABCD中,AB=2,点E是边CD的中点,点F是边BC上的一个动点,连结AE,AF,作EP⊥AF于点P.(1)如图②,当点P恰好落在正方形ABCD对角线BD上时,线段AP的长度为;(2)如图③,过点P分别作PM⊥AB于点M,PN⊥BC于点N,连结MN,则MN的最小值为.【变式3-2】(2020秋•盱眙县期末)如图,△ABC中,AC=BC=4,∠ACB=90°,过点C任作一条直线CD,将线段BC沿直线CD翻折得线段CE,直线AE交直线CD于点F.(1)小智同学通过思考推得当点E在AB上方时,∠AEB的角度是不变的,请按小智的思路帮助小智完成以下推理过程:∵AC=BC=EC,∴A、B、E三点在以C为圆心以AC为半径的圆上.∴∠AEB=∠ACB=°.(2)若BE=2,求CF的长.(3)线段AE最大值为;若取BC的中点M,则线段MF的最小值为.4.如图(1),在Rt△ABC中,∠A=90°,AB=AC=4,D、E分别是AB,AC的中点.若等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,如图(2),设旋转角为a(0°<a≤180°),记直线BD1与CE1的交点为P.(1)求证:BD1=CE1;(2)当∠CPD1=2∠CAD1时,则旋转角为a=(直接写结果)(3)连接PA,△PAB面积的最大值为(直接写结果)【变式4-1】如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为BC边上的动点,将△FCE沿直线EF翻折,点C落在点P处,求点P到边AB距离的最小值.【变式4-2】如图,在平面直角坐标系中,点M在x轴负半轴上,⊙M与x轴交于A、B两点(A在B的左侧),与y轴交于C、D两点(点C在y轴正半轴上),且,点B的坐标为(3,0),点P为优弧CAD上的一个动点,连结CP,过点M作ME⊥CP于点E,交BP于点N,连结AN.(1)求⊙M的半径长;(2)当BP平分∠ABC时,求点P的坐标;(3)当点P运动时,求线段AN的最小值.5.问题发现(1)如图1,在△ABC中,AB=2,∠C=60°,试猜想△ABC面积的最大值为;问题探究(2)如图2,在四边形ABCD中,AB∥DC,∠A=90°,AB=BC,∠C=120°,连接BD,求cos∠ADB的值;问题解决(3)如图3,在四边形ABCD中,∠ADC=90°,DC=2AD,AB=10,C为AB为直径的半圆上一点,O为圆心,请问四边形ABCD的面积是否存在最大值?若存在,求这个最大值;若不存在,试说明理由.【变式5-1】问题提出:如图1:在△ABC中,BC=10且∠BAC=45°,点O为△ABC的外心,则△ABC的外接圆半径是.问题探究:如图2,正方形ABCD中,E、F分别是边BC、CD两边上点且∠EAF=45°,请问线段BE、DF、EF有怎样的数量关系?并说明理由.问题解决:如图3,四边形ABCD中,AB=AD=4,∠B=45°,∠D=135°,点E、F分别是射线CB、CD上的动点,并且∠EAF=∠C=60°,试问△AEF的面积是否存在最小值?若存在,请求出最小值.若不存在,请说明理由.1.(2022•东营)如图,AB为⊙O的直径,点C为⊙O上一点,BD⊥CE于点D,BC平分∠ABD.(1)求证:直线CE是⊙O的切线;(2)若∠ABC=30°,⊙O的半径为2,求图中阴影部分的面积.2.(2022•锦州)如图,在⊙O中,AB为⊙O的直径,点E在⊙O上,D为的中点,连接AE,BD并延长交于点C.连接OD,在OD的延长线上取一点F,连接BF,使∠CBF=∠BAC.(1)求证:BF为⊙O的切线;(2)若AE=4,OF=,求⊙O的半径.3.(2022•鞍山)如图,⊙O是△ABC的外接圆,AB为⊙O的直径,点E为⊙O上一点,EF∥AC交AB的延长线于点F,CE与AB交于点D,连接BE,若∠BCE=∠ABC.(1)求证:EF是⊙O的切线.(2)若BF=2,sin∠BEC=,求⊙O的半径.4.(2022•菏泽)如图,在△ABC中,以AB为直径作⊙O交AC、BC于点D、E,且D是AC的中点,过点D作DG⊥BC于点G,交BA的延长线于点H.(1)求证:直线HG是⊙O的切线;(2)若HA=3,cosB=,求CG的长.5.(2022•枣庄)如图,在半径为10cm的⊙O中,AB是⊙O的直径,CD是过⊙O上一点C的直线,且AD⊥DC于点D,AC平分∠BAD,点E是BC的中点,OE=6cm.(1)求证:CD是⊙O的切线;(2)求AD的长.6.(2022•兰州)如图,⊙O是△ABC的外接圆,AB是直径,OD⊥OC,连接AD,∠ADO=∠BOC,AC与OD相交于点E.(1)求证:AD是⊙O的切线;(2)若tan∠OAC=,AD=,求⊙O的半径.7.(2022•郴州)如图,在△ABC中,AB=AC.以AB为直径的⊙O与线段BC交于点D,过点D作DE⊥AC,垂足为E,ED的延长线与AB的延长线交于点P.(1)求证:直线PE是⊙O的切线;(2)若⊙O的半径为6,∠P=30°,求CE的长.8.(2022•辽宁)如图,△ABC内接于⊙O,AC是⊙O的直径,过OA上的点P作PD⊥AC,交CB的延长线于点D,交AB于点E,点F为DE的中点,连接BF.(1)求证:BF与⊙O相切;(2)若AP=OP,cosA=,AP=4,求BF的长.9.(2022秋•黄埔区期末)如图1,⊙O为△ABC的外接圆,半径为6,AB=AC,∠BAC=120°,点D为优弧上异于B、C的一动点,连接DA、DB、DC.(1)求证:AD平分∠BDC;(2)如图2,CM平分∠BCD,且与AD交于M.花花同学认为:无论点D运动到哪里,始终有AM=AC;都都同学认为:AM的长会随着点D运动而变化.你贽同谁的观点,请说明理由.(3)求DA+DB+DC的最大值.10.(2022秋•江都区月考)在半径为5的⊙O中,AB是直径,点C是直径AB上方半圆上一动点,连接AC、BC.(1)如图1,则△ABC面积的最大值是;(2)如图2,如果AC=8,①则BC=;②作∠ACB的平分线CP交⊙O于点P,求长CP的长.(3)如图3,连接AP并保持CP平分∠ACB,D为线段BC的中点,过点D作DH⊥AP,在C点运动过程中,请直接写出DH长的最大值.11.(2022秋•姑苏区校级期中)如图,已知半径为2的⊙O与直线l相切于点A,点P是直径AB左侧半圆上的动点,过点P作PC⊥l,垂足为点C,PC与⊙O交于点D,连接PA,PB,设PC的长为x(2<x<4).(1)当x=3时,求弦PA,PB的长度;(2)用含有x的代数式表示PD•CD,并求出当x为何值时,PD•CD的值最大?最大值是多少?12.(2022•嵩县模拟)如图,Rt△ABC的中,∠BAC=90°,AB=4cm,AC=3cm,点G是边AB上一动点,以AG为直径的⊙O交CG于点D,E是边AC的中点,连接DE.(1)求证:DE与⊙O相切;(2)填空:①当AG=3cm时,⊙O与直线BC相切;②当点G在边AB上移动时,△CDE面积的最大值是cm2.13.(1)如图,△ABC中,OA=OB=OC,试求∠ACO和∠ABC的关系.(2)已知△ABC中,∠A和∠B都是锐角,D和E在AB上,满足:AD=BD,CE⊥AB,已知∠ACD=∠BCE,试判断△ABC的形状.14.(2021秋•自贡期末)在△ABC中,AB=AC,过点C作CD⊥BC,垂足为C,∠BDC=∠BAC,AC与BD交于点E.(1)如图1,∠ABC=60°,BD=6,求DC的长;(2)如图2,AM⊥BD,AN⊥CD,垂足分别为M,N,CN=4,求DB+DC的长.15.(2021秋•越秀区校级期中)如图1,在△ABC中,∠ACB=90°,CD平分∠ACB,且AD⊥BD于点D.(1)判断△ABD的形状;(2)如图2,在(1)的结论下,若BQ=2,DQ=3,∠BQD=75°,求AQ的长;(3)如图3,在(1)的结论下,若将DB绕着点D顺时针旋转α(0°<α<90°)得到DP,连接BP,作DE⊥BP交AP于点F.试探究AF与DE的数量关系,并说明理由.圆的综合圆的综合问题在中考中常常以选择题以及解答题的形式出现,解答题居多且分值较大,难度较高.多考查切线的性质与判定、圆中求线段长度问题和圆中最值问题,一般会用到特殊三角形、特殊四边形、相似三角形、锐角三角函数、勾股定理、图形变换等相关知识点,以及数形结合、整体代入等数学思想.此类题型常涉及以下问题:①切线的判定;②计算线段长及证明线段比例关系;③求三角函数值;④利用“辅助圆”求最值.右图为圆的综合问题中各题型的考查热度.题型1:切线的判定解题模板:1.(2022•阜新)如图,在Rt△ABC中,∠ACB=90°,O是BC边上一点,以O为圆心,OB为半径的圆与AB相交于点D,连接CD,且CD=AC.求证:CD是⊙O的切线;【分析】连接OD.由等腰三角形的性质及圆的性质可得∠A=∠ADC,∠B=∠BDO.再根据余角性质及三角形的内角和定理可得∠ODC=180°﹣(∠ADC+∠BDO)=90°.最后由切线的判定定理可得结论;【解答】证明:连接OD.∵AC=CD,∴∠A=∠ADC.∵OB=OD,∴∠B=∠BDO.∵∠ACB=90°,∴∠A+∠B=90°.∴∠ADC+∠BDO=90°.∴∠ODC=180°﹣(∠ADC+∠BDO)=90°.又∵OD是⊙O的半径,∴CD是⊙O的切线.【变式1-1】(2022•鄂尔多斯)如图,以AB为直径的⊙O与△ABC的边BC相切于点B,且与AC边交于点D,点E为BC中点,连接DE、BD.求证:DE是⊙O的切线;【分析】连接OD,可推出∠BDC=90°,进而得出DE=BE,进而证明△DOE≌△BOE,进一步得出结论;【解答】证明:如图,连接OD,∵AB为⊙O的直径,∴∠BDC=∠ADB=90°,∵E是BC的中点,∴DE=BE=EC=,在△DOE和△BOE中,,∴△DOE≌△BOE(SSS),∴∠ODE=∠ABC=90°,∴OD⊥DE∵点D在⊙O上,∴DE是⊙O的切线;【变式1-2】(2022•荆门)如图,AB为⊙O的直径,点C在直径AB上(点C与A,B两点不重合),OC=3,点D在⊙O上且满足AC=AD,连接DC并延长到E点,使BE=BD.(1)求证:BE是⊙O的切线;【分析】根据直径所对的圆周角是直角可得∠ADB=90°,从而可得∠BDE+∠ADC=90°,根据等腰三角形的性质以及对顶角相等可得∠ECB=∠ADC,然后根据等腰三角形的性质可得∠E=∠BDE,从而可得∠E+∠BCE=90°,最后利用三角形内角和定理可得∠EBC=90°,即可解答;【解答】证明:∵AB为⊙O的直径,∴∠ADB=90°,∴∠BDE+∠ADC=90°,∵AC=AD,∴∠ACD=∠ADC,∵∠ACD=∠ECB,∴∠ECB=∠ADC,∵EB=DB,∴∠E=∠BDE,∴∠E+∠BCE=90°,∴∠EBC=180°﹣(∠E+∠ECB)=90°,∵OB是⊙O的半径,∴BE是⊙O的切线;题型2:圆中求线段长度解题模板:2.(2022•西宁)如图,在Rt△ABC中,∠C=90°,点D在AB上,以BD为直径的⊙O与AC相切于点E,交BC于点F,连接DF,OE交于点M.(1)求证:四边形EMFC是矩形;(2)若AE=,⊙O的半径为2,求FM的长.【分析】(1)利用直径所对的圆周角是直角及邻补角互补,可求出∠CFD=90°,由⊙O与AC相切于点E,利用圆的切线垂直于过切点的半径可得出OE⊥AC,进而可得出∠OEC=∠OEA=90°,结合∠C=90°,三个角是直角即可证明矩形即可;(2)在Rt△AEO中,利用勾股定理可求出OA的长,进而可得出AB的长,由∠AEO=∠C,利用“同位角相等,两直线平行”可得出OE∥BC,进而可得出△AEO∽△ACB,利用相似三角形的性质可求出AC的长,结合CE=AC﹣AE可求出CE的长,再利用矩形的对边相等,即可求出FM的长.【解答】(1)证明:∵BD是⊙O的直径,∴∠BFD=90°,∴∠CFD=90°.∵⊙O与AC相切于点E,∴OE⊥AC,∴∠OEC=∠OEA=90°.又∵∠C=90°,∴∠C=∠CFD=∠OEC=90°,∴∠EMF=90°,∴四边形EMFC是矩形.(2)解:在Rt△AEO中,∠AEO=90°,AE=,OE=2,∴OA===3,∴AB=OA+OB=3+2=5.∵∠AEO=∠C=90°,∴OE∥BC,∴△AEO∽△ACB,∴=,即=,∴AC=,∴CE=AC﹣AE=﹣=.又∵四边形EMFC是矩形,∴FM=CE=.【点评】本题考查了矩形的判定、相切、勾股定理、平行线的判定与性质以及相似三角形的判定与性质,解题的关键是:(1)根据各角之间的关系,找出四边形EMFC的四个角均为直角;(2)利用勾股定理及相似三角形的性质,求出AC的长度.【变式2-1】(2022•盘锦)如图,四边形ABCD是正方形,点A,点B在⊙O上,边DA的延长线交⊙O于点E,对角线DB的延长线交⊙O于点F,连接EF并延长至点G,使∠FBG=∠FAB.(1)求证:BG与⊙O相切;(2)若⊙O的半径为1,求AF的长.【分析】(1)连接BE,根据四边形ABCD是正方形,得到∠BAE=90°,从而得到BE是圆O的直径,结合∠BAF+∠EAF=90°,∠EAF=∠EBF,∠FBG=∠FAB,证明∠FBG+∠EBF=90°即可;(2)连接OA,OF,证明∠FED=45°,从而证明∠AOF=90°,利用勾股定理计算即可.【解答】(1)证明:连接BE,∵四边形ABCD是正方形,∴∠BAE=90°,∴BE是圆O的直径,∵∠BAF+∠EAF=90°,∠EAF=∠EBF,∠FBG=∠FAB,∴∠FBG+∠EBF=90°,∴∠OBG=90°,故BG是圆O的切线;(2)解:如图,连接OA,OF,∵四边形ABCD是正方形,BE是圆的直径,∴∠EFD=90°,∠FDE=45°,∴∠FED=45°,∴∠AOF=90°,∵OA=OF=1,∴AF2=AO2+FO2=1+1=2,∴AF=,AF=﹣(舍去).【点评】本题考查了圆的切线判定,圆周角定理,勾股定理,熟练掌握切线的判定定理,圆周角定理,勾股定理是解题的关键.【变式2-2】(2022•聊城)如图,点O是△ABC的边AC上一点,以点O为圆心,OA为半径作⊙O,与BC相切于点E,交AB于点D,连接OE,连接OD并延长交CB的延长线于点F,∠AOD=∠EOD.(1)连接AF,求证:AF是⊙O的切线;(2)若FC=10,AC=6,求FD的长.【分析】(1)根据SAS证△AOF≌△EOF,得出∠OAF=∠OEF=90°,即可得出结论;(2)根据勾股定理求出AF,证△OEC∽△FAC,设圆O的半径为r,根据线段比例关系列方程求出r,利用勾股定理求出OF,最后根据FD=OF﹣OD求出即可.【解答】(1)证明:在△AOF和△EOF中,,∴△AOF≌△EOF(SAS),∴∠OAF=∠OEF,∵BC与⊙O相切,∴OE⊥FC,∴∠OAF=∠OEF=90°,即OA⊥AF,∵OA是⊙O的半径,∴AF是⊙O的切线;(2)解:在Rt△CAF中,∠CAF=90°,FC=10,AC=6,∴AF==8,∵∠OCE=∠FCA,∠OEC=∠FAC=90°,∴△OEC∽△FAC,∴,设⊙O的半径为r,则,解得r=,在Rt△FAO中,∠FAO=90°,AF=8,AO=,∴OF==,∴FD=OF﹣OD=﹣,即FD的长为﹣.【点评】本题主要考查切线的判定和性质,熟练掌握切线的判定和性质是解题的关键.题型3:圆中的最值问题解题模板:技巧精讲:辅助圆模型3.(2020•碑林区校级模拟)问题提出:(1)如图①,半圆O的直径AB=10,点P是半圆O上的一个动点,则△PAB的面积最大值是.问题探究:(2)如图②,在边长为10的正方形ABCD中,点G是BC边的中点,E、F分别是AD和CD边上的点,请探究并求出四边形BEFG的周长的最小值.问题解决:(3)如图③,四边形ABCD中,AB=AD=6,∠BAD=60°,∠BCD=120°,四边形ABCD的周长是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.【分析】(1)如图1,点P运动至半圆O的中点时,底边AB上的高最大,即P'O=r=5,求出此时△P'AB的面积即可;(2)如图2,作点G关于CD的对称点G′,作点B关于AD的对称点B′,连接B′G′,B'E,FG',根据两点之间线段最短即可解决问题;(3)如图3,连接AC、BD,在AC上取一点,使得DM=DC.首先证明AC=CD+CB,再证明当AC为△ABC的外接圆的直径时,四边形ABCD的周长最大.【解答】解:(1)如图1,点P运动至半圆O的中点时,底边AB上的高最大,即P'O=r=5,此时△PAB的面积最大值,∴S△P'AB=×10×5=25,故答案为:25;(2)如图2,作点G关于CD的对称点G′,作点B关于AD的对称点B′,连接B′G′,B'E,FG',∵EB=EB′,FG=FG′,∴BE+EF+FG+BG=B′E+EF+FG′+BG,∵EB′+EF+FG′≥B′G′,∴四边形BEFG的周长的最小值=BG+B′G′,∵BG=BC=5,BB′=20,BG′=15,∴B′G′===25,∴四边形BEFG的周长的最小值为30.(3)如图3,连接AC、BD,在AC上取一点,使得DM=DC.∵∠DAB=60°,∠DCB=120°,∴∠DAB+∠DCB=180°,∴A、B、C、D四点共圆,∵AD=AB,∠DAB=60°,∴△ADB是等边三角形,∴∠ABD=∠ADB=60°,∴∠ACD=∠ADB=60°∵DM=DC,∴△DMC是等边三角形,∴∠ADB=∠MDC=60°,CM=DC,∴∠ADM=∠BDC,∵AD=BD,∴△ADM≌△BDC(SAS),∴AM=BC,∴AC=AM+MC=BC+CD,∵四边形ABCD的周长=AD+AB+CD+BC=AD+AB+AC,∵AD=AB=6,∴当AC最大时,四边形ABCD的周长最大,∴当AC为△ABC的外接圆的直径时,四边形ABCD的周长最大,∵,∴AC的最大值=4,∴四边形ABCD的周长最大值为12+4.【点评】本题是圆的综合题,考查了三角形的面积、轴对称、勾股定理、全等三角形的判定和性质、等边三角形的判定和性质、四点共圆、圆的直径最大等知识,解题的关键是灵活运用所学知识解决问题,学会利用辅助圆解决最值问题.【变式3-1】(2022秋•南关区校级期末)【问题情境】如图①,在四边形ABCD中,∠B=∠D=90°,求证:A、B、C、D四点共圆.小吉同学的作法如下:连结AC,取AC的中点O,连结OB、OD,请你帮助小吉补全余下的证明过程;【问题解决】如图②,在正方形ABCD中,AB=2,点E是边CD的中点,点F是边BC上的一个动点,连结AE,AF,作EP⊥AF于点P.(1)如图②,当点P恰好落在正方形ABCD对角线BD上时,线段AP的长度为;(2)如图③,过点P分别作PM⊥AB于点M,PN⊥BC于点N,连结MN,则MN的最小值为.【解答】【问题情境】证明:如图,连结AC,取AC的中点O,连结OB、OD,∵∠ADC=∠ABC=90°,O为AC的中点,∴OA=OB=OC=OD=AC,∴A、B、C、D四点共圆;【问题解决】解:(1)∵四边形ABCD为正方形,点E是边CD的中点,AB=2,∴AD=2,DE=1,∴AE=,由【问题情境】结论可知,A、D、E、P四点共圆,如图,∴∠PAE=∠PDE,∵BD为正方形ABCD的对角线,∴∠PDE=∠PAE=45°,∵EP⊥AF,∴△PAE为等腰直角三角形,设AP长为a,则PE长为a,∴AP2+PE2=AE2,即,解得:a1=,(不合题意,舍去),∴线段AP的长度为;故答案为:;(2)由【问题情境】结论可知,A、D、E、P四点共圆,如图,过点O作OG⊥AD于点G,作OH⊥AB于点H,连接OB交⊙O于点P′,连接PB,∵PM⊥AB,PN⊥BC,∴∠PMB=∠MBN=∠PNB=90°,∴四边形MBNP为矩形,∴MN=PB,要求MN的最小值,即求PB的最小值,由(1)知,AE=,∴,∵OG⊥AD,且点O为AE的中点,∴OG∥DE,∴OG为△ADE的中位线,∴AG=1,OG=,∵OG⊥AD,OH⊥AB,∴四边形AHOG为矩形,∴AH=OG=,OH=AG=1,∴BH=,在Rt△BHO中,,根据两点之间线段最短得,PB+OP≥OB,PB≥OB﹣OP=,∴PB的最小值为,∴MN的最小值为.故答案为:.【点评】本题主要考查四点共圆、正方形的性质,等腰直角三角形的性质、勾股定理、中位线的判定与性质、平行线的判定与性质,属于圆的综合题,熟练掌握相关知识是解题关键.【变式3-2】(2020秋•盱眙县期末)如图,△ABC中,AC=BC=4,∠ACB=90°,过点C任作一条直线CD,将线段BC沿直线CD翻折得线段CE,直线AE交直线CD于点F.(1)小智同学通过思考推得当点E在AB上方时,∠AEB的角度是不变的,请按小智的思路帮助小智完成以下推理过程:∵AC=BC=EC,∴A、B、E三点在以C为圆心以AC为半径的圆上.∴∠AEB=∠ACB=°.(2)若BE=2,求CF的长.(3)线段AE最大值为;若取BC的中点M,则线段MF的最小值为.【分析】(1)根据AC=BC=EC,得A、B、E三点在以C为圆心以AC为半径的圆上,根据圆周角定理可知∠AEB的度数;(2)由△EFG是等腰三角形可求出FG=1,利用勾股定理求出CG的长,从而得出答案;(3)根据直径是圆中最大的弦知当AE经过圆心C时,线段AE的最大值为2AC=8,取AB的中点O,连接OF,可证∠AFB=90°,则点F在以AB为直径的圆O上,当OF经过点M时,MF最短,此时OF⊥BC,从而解决问题.【解答】解:(1)∵AC=BC=EC,∴A、B、E三点在以C为圆心以AC为半径的圆上,∴∠AEB=,故答案为:,45;(2)由折叠可知,CD垂直平分BE,∴BE⊥CD,设CD、BE交于点G,则GE=BG=,∴∠FGE=90°,∵∠AEB=45°,∴FG=GE=1,在Rt△CEG中,由勾股定理得,CG==,∴CF=CG﹣FG=﹣1;(3)∵A,B,E,三点在以C为圆心,以AC为半径的圆上,∴当AE经过圆心C时,线段AE的最大值为2AC=8,在Rt△ABC中,AC=BC=4,∠ACB=90°,∴AB==4,BM=CM=,∠ABC=∠BAC=45°,连接BF,取AB的中点O,连接OF,如图,∵CD垂直平分BE,∠AEB=45°,∴BF=EF,∴∠EBF=∠AEB=45°,∴∠EFB=90°,∴∠AFB=90°,∴OF=,∴点F在以点O为圆心,AB为直径的圆上,∵∠ACB=90°,∴点C在⊙O上,∴当OF经过点M时,MF最短,此时OF⊥BC,∴OM=BM•tan∠ABC=2×1=2,∴MF=OF﹣OM=2﹣2,即线段MF的最小值为2﹣2,故答案为:8;2﹣2.【点评】本题是圆的综合题,主要考查了等腰直角三角形的性质,线段垂直平分线的性质,圆周角定理,利用定点定长构造辅助圆是解题的关键.4.如图(1),在Rt△ABC中,∠A=90°,AB=AC=4,D、E分别是AB,AC的中点.若等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,如图(2),设旋转角为a(0°<a≤180°),记直线BD1与CE1的交点为P.(1)求证:BD1=CE1;(2)当∠CPD1=2∠CAD1时,则旋转角为a=(直接写结果)(3)连接PA,△PAB面积的最大值为(直接写结果)【分析】(1)由旋转得到△ABD1≌△ACE1的条件即可;(2)由(1)的结论,得出∠ABD1=∠ACE1,即可得出结论;(3)作出辅助线,利用勾股定理建立方程求出即可.【解答】解:(1)在△ABD1和△ACE1中∴△ABD1≌△ACE1∴BD1=CE1;(2)BD1与AC的交点记作点G,如图(2),由(1)知△ABD1≌△ACE1,∴∠ABD1=∠ACE1,∵∠AGB=∠CGP,∴∠CPG=∠BAG=90°∴∠CPD1=90°,∵∠CPD1=2∠CAD1,∴∠CAD1=∠CPD1=45°,∴旋转角α=90°+∠CAD1=135°故答案为135°;(3)如图3,∵AC=AB=4,∵点D,E分别是AB,AC的中点,∴AD=AE=2,由旋转知,AD1=AE1=AD=2作PH⊥AB,交AB所在直线于点G,∵D1,E1在以A为圆心,AD为半径的圆上,当BD1所在直线与⊙A相切时,直线BD1与CE1的交点P到直线AB的距离最大,此时四边形AD1PE1是正方形,PD1=2,则BD1==2,∴∠ABP=30°,∴PB=BD1+PD1=2+2,∴点P到AB所在直线的距离的最大值为:PH=+.∴△PAB的面积最大值为AB×PH=4+4,故答案为4+4.【点评】此题是几何变换综合题,主要考查了全等三角形的性质和判定,勾股定理的应用,作出辅助线是解本题的关键.【变式4-1】如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为BC边上的动点,将△FCE沿直线EF翻折,点C落在点P处,求点P到边AB距离的最小值.【分析】延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小,利用△AMF∽△ACB,得FM的长,从而解决问题.【解答】解:如图,延长FP交AB于M,∵FP=CF=2,∴点P在以F为圆心,CF为半径的圆上运动,当FP⊥AB时,点P到AB的距离最小,∵∠A=∠A,∠AMF=∠C=90°,∴△AMF∽△ACB,∴,∵CF=2,AC=6,BC=8,∴AF=4,AB==10,∴,∴FM=3.2,∵PF=CF=2,∴PM=1.2,∴点P到边AB距离的最小值为1.2.【点评】本题主要考查了翻折的性质,相似三角形的判定与性质,确定点P的运动路径是解题的关键.【变式4-2】如图,在平面直角坐标系中,点M在x轴负半轴上,⊙M与x轴交于A、B两点(A在B的左侧),与y轴交于C、D两点(点C在y轴正半轴上),且,点B的坐标为(3,0),点P为优弧CAD上的一个动点,连结CP,过点M作ME⊥CP于点E,交BP于点N,连结AN.(1)求⊙M的半径长;(2)当BP平分∠ABC时,求点P的坐标;(3)当点P运动时,求线段AN的最小值.【分析】(1)连接CM,由CD=2OM,CD⊥MB,得CM==2OM,得∠MCO=30°,∠CMO=60°,从而证明结论;(2)连接AP,过点P作PF⊥AB于F,由BP平分∠ABC,得∠ABP=30°,则AP=,在Rt△PFB中,由∠ABP=30°,得PF=,BF==9,从而得出点P的坐标;(3)由∠PNE=∠BNM=60°,BM=6,可知点N在以G为圆心,GM为半径的圆上,连接AG,此时AN的最小值为AG﹣GM,再利用勾股定理分别求出AG和GM的长即可.【解答】解:(1)如图,连接CM,∵CD=2OM,∴OM,∵CD⊥MB,∴CM==2OM,∴∠MCO=30°,∠CMO=60°,∵MC=MB,∴△CMB为等边三角形,∵B(3,0),∴OB=3,∴MB=2OB=6,∴⊙M的半径长为6;(2)连接AP,过点P作PF⊥AB于F,∵AB为⊙M的直径,AB=2MB=12,∴∠APB=90°,∴△APB为直角三角形,由(1)得△CMB是等边三角形,∵BP平分∠ABC,∴∠ABP=30°,∴AP=,∴BP==6,在Rt△PFB中,由∠ABP=30°,∴PF=,∴BF==9,∴OF=BF﹣OB=6,∴OF=6,PF=3,∴P(﹣6,3);(3)∵CD垂直平分MB,∴在OC上取点G,使∠GMB=30°,连接GM,GB,∵ME⊥PC,∴∠PEM=90°,∵∠CPB=∠CMB=30°,∴∠PNE=∠BNM=60°,∴BM=6,∴点N在以G为圆心,GM为半径的圆上,连接AG,此时AN的最小值为AG﹣GM,∵BM=6,∠GMB=30°,∴OG=,GM=2,在Rt△AOG中,由勾股定理得,AG=,∴AN的最小值为2﹣2.【点评】本题是圆的综合题,主要考查了圆周角定理,等边三角形的判定与性质,含30°角的直角三角形的性质,勾股定理等知识,运用定弦对定角确定点N的运动路径是解题的关键.5.问题发现(1)如图1,在△ABC中,AB=2,∠C=60°,试猜想△ABC面积的最大值为;问题探究(2)如图2,在四边形ABCD中,AB∥DC,∠A=90°,AB=BC,∠C=120°,连接BD,求cos∠ADB的值;问题解决(3)如图3,在四边形ABCD中,∠ADC=90°,DC=2AD,AB=10,C为AB为直径的半圆上一点,O为圆心,请问四边形ABCD的面积是否存在最大值?若存在,求这个最大值;若不存在,试说明理由.【分析】(1)作△ABC的外接圆,当C处于点C'时,△ABC面积最大;(2)连接AC,过点C作CE⊥AB于E,由△ABC为等边三角形,设AB=2m,则AE=m,则CE==m,再证明四边形AECD为矩形,得DA=CE=m,利用勾股定理求出BD===m,从而得出答案;(3)连接AC,过点D作DH⊥AC于H,过点C作CE⊥AB于E,由△CDA∽△DHA,△ADC∽△DCH,由DH=2AH,CH=2DH,得AH=,DH=,设BE=m,AE=10﹣m,利用m的代数式表示△ACD和△ABC的面积,根据Δ≥0,从而得出S的范围.【解答】解:(1)作△ABC的外接圆,∵AB=2,∠C=60°,∴当C处于点C'时,△ABC面积最大,∵C'A=C'B,∠C'=60°,∴△ABC'为等边三角形,边长为2,过点C'作C'D⊥AB于D,则AD=1,∴C'D==,∴S=,故答案为:;(2)如图,连接AC,过点C作CE⊥AB于E,∵AB∥DC,∠A=90°,∴∠ADC=90°,∵∠BCD=120°,∴∠CBA=60°,∵AB=BC,∴△ABC为等边三角形,设AB=2m,则AE=m,∴CE==m,∵∠ADC=∠DAB=∠CEA=90°,∴四边形AECD为矩形,∴DA=CE=m,在Rt△DAB中,BD===m,∴cos=;(3)存在,如图,连接AC,过点D作DH⊥AC于H,过点C作CE⊥AB于E,∵∠DAC=∠HAD,∠CDA=∠DHA=90°,∠DCA=∠HCD,∴△CDA∽△DHA,△ADC∽△DCH,∵DC=2AD,∴DH=2AH,CH=2DH,∴AH=,DH=,∴S=,设BE=m,AE=10﹣m,∵∠B+∠CAB=90°,∠B+∠BCE=90°,∴∠BCE=∠BAC,∵∠CEB=∠ACB=90°,∴△ACB∽△CEB,∴,∴BC2=AB•BE,即AC2+AB•BE=AB2,∴AC2+AB•(AB﹣AE)=AB2,∴AC2=AB•AE=10×(10﹣m),∵∠B+∠ECB=90°,∠ECB+∠ACE=90°,∴∠B=∠ACE,∵∠CEB=∠AEC=90°,∴△CEB∽△AEC,∴,∴CE2=AE•EB=m(10﹣m),∴CE=,∴S=5,S四边形ABCD=S△ADC+S△ABC,S=,∴S=2(10﹣m)+5,两边平方整理得:29m2﹣(330﹣4S)m+S2﹣40S+400=0,Δ=(330﹣4S)2﹣4×29×(S2﹣40S+400)≥0,整理得:S2﹣20S﹣625≤0,即(S﹣10)2≤725,∴﹣5+10+10,∴S的最大值为5+10.【点评】本题是四边形综合题,主要考查了相似三角形的判定与性质,等边三角形的判定与性质,一元二次方程根的情况等知识,运用代数方法解决几何问题是解题的关键.【变式5-1】问题提出:如图1:在△ABC中,BC=10且∠BAC=45°,点O为△ABC的外心,则△ABC的外接圆半径是.问题探究:如图2,正方形ABCD中,E、F分别是边BC、CD两边上点且∠EAF=45°,请问线段BE、DF、EF有怎样的数量关系?并说明理由.问题解决:如图3,四边形ABCD中,AB=AD=4,∠B=45°,∠D=135°,点E、F分别是射线CB、CD上的动点,并且∠EAF=∠C=60°,试问△AEF的面积是否存在最小值?若存在,请求出最小值.若不存在,请说明理由.【分析】(1)如图1,作出△ABC的外接圆⊙O,得出OB=sin45°×BC代入计算即可;(2)延长EB,使BG=DF,连接AG,先证△ABG≌△ADF(SAS),得AG=AF,∠GAB=∠DAF,再证△GAE≌△FAE(SAS),从而有EF=GE=DF+BE;(3)类比(2)两次全等,可得△AEF中EF边上的高为4,再结合(1)中辅助圆求出EF的最小值解决问题.【解答】解:(1)如图1,作出△ABC的外接圆⊙O,∵∠A=45°,∴∠BOC=90°,∵BC=10,∴OB=sin45°×BC=,故答案为:5.(2)EF=BE+DF,理由如下:如图2,延长EB,使BG=DF,连接AG,∵四边形ABCD是正方形,∴AB=AD,∠ABG=∠D=90°,在△ABG和△ADF中,,∴△ABG≌△ADF(SAS),∴AG=AF,∠GAB=∠DAF,∵∠EAF=45°,∴∠DAF+∠BAE=45°,∴∠GAE=45°,在△GAE和△FAE中,,∴△GAE≌△FAE(SAS),∴EF=GE=DF+BE,(3)存在最小值,如图3,延长CB,使BG=DF,∵∠ABC=45°,∴∠ABG=135°,∴∠ABG=∠ADF,又∵AB=AD,∴△ABG≌△ADF(SAS),∴∠GAB=∠FAD,AG=AF,∵∠ABC=45°,∠D=135°,∠C=60°,∴∠BAD=120°,∵∠EAF=60°,∴∠BAE+∠DAF=60°,∴∠GAE=60°,∴△GAE≌△FAE(SAS),在△AEF中,∵∠EAF=60°,AH=4,∴EF边上的高AK=4,画△AEF的外接圆⊙O,作OM⊥EF于M,∵∠EAF=60°,∴∠EOM=60°,设OM=x,EM=,OE=2x,EF=2,∵OM+OA≥AK,∴x+2x≥4,∴x≥,∴EF的最小值为2×,∴S△AEF的最小值为.【点评】本题是几何类阅读理解题,考查了三角形的外接圆、三角形全等的判定与性质、三角形面积的最值问题等知识,解决此类问题注意“前为后用,后化为前”的处理策略.1.(2022•东营)如图,AB为⊙O的直径,点C为⊙O上一点,BD⊥CE于点D,BC平分∠ABD.(1)求证:直线CE是⊙O的切线;(2)若∠ABC=30°,⊙O的半径为2,求图中阴影部分的面积.【分析】(1)连接OC,根据等腰三角形的性质、角平分线的定义得到∠DBC=∠OCB,证明OC∥BD,根据平行线的性质得到OC⊥CE,根据切线的判定定理证明结论;(2)过点O作OH⊥BC于H,根据垂径定理得到BH=HC,根据余弦的定义求出BH,进而求出BC,根据正弦的定义求出OH,根据扇形面积公式、三角形的面积公式计算,得到答案.【解答】(1)证明:连接OC,∵OB=OC,∴∠OBC=∠OCB,∵BC平分∠ABD,∴∠OBC=∠DBC,∴∠DBC=∠OCB,∴OC∥BD,∵BD⊥CE,∴OC⊥CE,∵OC为⊙O的半径,∴CE是⊙O的切线;(2)解:过点O作OH⊥BC于H,则BH=HC,在Rt△OHB中,∠OBH=30°,OB=2,∴BH=OB•cos∠OBH=2×=,OH=OB=1,∴BC=2,∵OB=OC,∴∠OCB=∠OBC=30°,∴∠BOC=120°,∴S阴影部分=S扇形BOC﹣S△BOC=﹣×2×1=﹣.【点评】本题考查的是切线的判定、扇形面积计算,掌握经过半径的外端且垂直于这条半径的直线是圆的切线是解题的关键.2.(2022•锦州)如图,在⊙O中,AB为⊙O的直径,点E在⊙O上,D为的中点,连接AE,BD并延长交于点C.连接OD,在OD的延长线上取一点F,连接BF,使∠CBF=∠BAC.(1)求证:BF为⊙O的切线;(2)若AE=4,OF=,求⊙O的半径.【分析】(1)连接AD,由圆周角定理可得∠ADB=90°,由等弧对等角可得∠BAD=∠CAD=∠BAC,再进行等量代换可得∠ABF=90°便可证明;(2)连接BE,由圆周角定理可得∠AEB=90°,∠BOD=2∠BAD,于是∠BOD=∠BAC,由△OBF∽△AEB可得OB:AE=OF:AB,再代入求值即可.【解答】(1)证明:如图,连接AD,AB是圆的直径,则∠ADB=90°,D为的中点,则∠BAD=∠CAD=∠BAC,∵,∴∠CBF=∠BAD,∵∠BAD+∠ABD=90°,∴∠ABF=∠ABD+∠CBF=90°,∴AB⊥BF,∵OB是⊙O的半径,∴BF是⊙O的切线;(2)解:如图,连接BE,AB是圆的直径,则∠AEB=90°,∵∠BOD=2∠BAD,∠BAC=2∠BAD,∴∠BOD=∠BAC,又∵∠ABF=∠AEB=90°,∴△OBF∽△AEB,∴OB:AE=OF:AB,∴OB:4=:2OB,OB2=9,OB>0,则OB=3,∴⊙O的半径为3.【点评】本题考查了圆周角定理,切线的判定,相似三角形的判定和性质;正确作出辅助线是解题关键.3.(2022•鞍山)如图,⊙O是△ABC的外接圆,AB为⊙O的直径,点E为⊙O上一点,EF∥AC交AB的延长线于点F,CE与AB交于点D,连接BE,若∠BCE=∠ABC.(1)求证:EF是⊙O的切线.(2)若BF=2,sin∠BEC=,求⊙O的半径.【分析】(1)根据切线的判定定理,圆周角定理解答即可;(2)根据相似三角形的判定定理和性质定理解答即可.【解答】(1)证明:连接OE,∵∠BCE=∠ABC,∠BCE=∠BOE,∴∠ABC=∠BOE,∴OE∥BC,∴∠OED=∠BCD,∵EF∥AC,∴∠FEC=∠ACE,∴∠OED+∠FEC=∠BCD+∠ACE,即∠FEO=∠ACB,∵AB是直径,∴∠ACB=90°,∴∠FEO=90°,∴FE⊥EO,∵EO是⊙O的半径,∴EF是⊙O的切线.(2)解:∵EF∥AC,∴△FEO∽△ACB,∴,∵BF=2,sin∠BEC=,设⊙O的半径为r,∴FO=2+r,AB=2r,BC=r,∴,解得:r=3,检验得:r=3是原分式方程的解,∴⊙O的半径为3.【点评】本题主要考查了切线的判定和性质,解直角三角形,熟练掌握相关的定理是解答本题的关键.4.(2022•菏泽)如图,在△ABC中,以AB为直径作⊙O交AC、BC于点D、E,且D是AC的中点,过点D作DG⊥BC于点G,交BA的延长线于点H.(1)求证:直线HG是⊙O的切线;(2)若HA=3,cosB=,求CG的长.【分析】(1)连接OD,根据三角形中位线定理得到OD∥BC,根据平行线的性质得到OD⊥HG,根据切线的判定定理证明结论;(2)根据余弦的定义求出⊙O的半径,根据三角形中位线定理求出BC,再根据余弦的定义求出BG,计算即可.【解答】(1)证明:连接OD,∵AD=DC,AO=OB,∴OD是△ABC的中位线,∴OD∥BC,OD=BC,∵DG⊥BC,∴OD⊥HG,∵OD是⊙O的半径,∴直线HG是⊙O的切线;(2)解:设⊙O的半径为x,则OH=x+3,BC=2x,∵OD∥BC,∴∠HOD=∠B,∴cos∠HOD=,即==,解得:x=2,∴BC=4,BH=7,∵cosB=,∴=,即=,解得:BG=,∴CG=BC﹣BG=4﹣=.【点评】本题考查的是切线的判定、三角形中位线定理、锐角三角函数的定义,掌握切线的判定定理是解题的关键.5.(2022•枣庄)如图,在半径为10cm的⊙O中,AB是⊙O的直径,CD是过⊙O上一点C的直线,且AD⊥DC于点D,AC平分∠BAD,点E是BC的中点,OE=6cm.(1)求证:CD是⊙O的切线;(2)求AD的长.【分析】(1)连接OC,由AC平分∠BAD,OA=OC,可得∠DAC=∠OCA,AD∥OC,根据AD⊥DC,即可证明CD是⊙O的切线;(2)由OE是△ABC的中位线,得AC=12,再证明△DAC∽△CAB,根据相似三角形的性质即可得到结论.【解答】(1)证明:连接OC,如图:∵AC平分∠BAD,∴∠DAC=∠CAO,∵OA=OC,∴∠CAO=∠OCA,∴∠DAC=∠OCA,∴AD∥OC,∵AD⊥DC,∴CO⊥DC,∵OC是⊙O的半径,∴CD是⊙O的切线;(2)解:∵E是BC的中点,且OA=OB,∴OE是△ABC的中位线,AC=2OE,∵OE=6cm,∴AC=12cm,∵AB是⊙O的直径,∴∠ACB=90°=∠ADC,又∠DAC=∠CAB,∴△DAC∽△CAB,∴,即=,∴AD=cm.【点评】本题考查圆的切线及圆中的计算,涉及圆周角定理、相似三角形的判定及性质等知识,解题的关键是熟练应用圆的相关性质,转化圆中的角和线段.6.(2022•兰州)如图,⊙O是△ABC的外接圆,AB是直径,OD⊥OC,连接AD,∠ADO=∠BOC,AC与OD相交于点E.(1)求证:AD是⊙O的切线;(2)若tan∠OAC=,AD=,求⊙O的半径.【分析】(1)根据垂直、平角的定义可得∠D+∠AOD=90°,进而得到AD⊥OA即可;(2)根据圆周角定理、三角形的内角和定理以及等腰三角形的判定和性质,可得到AD=DE,再根据锐角三角函数可得OE=OC,在Rt△AOD中由勾股定理可求半径.【解答】(1)证明:∵OD⊥OC,∴∠COD=90°,∴∠BOC+∠AOD=180°﹣90°=90°,又∵∠ADO=∠BOC,∴∠ADO+∠AOD=90°,∴∠OAD=180°﹣90°=90°,即OA⊥AD,∵OA是半径,∴AD是⊙O的切线;(2)解:∵OA=OC,∴∠OAC=∠OCA,∴tan∠OAC==tan∠OCA=,∵AB是直径,∴∠ACB=90°=∠OAD,即∠OCB+∠OCA=90°=∠OAC+∠DAE,∴∠DAE=∠OCB,又∵∠ADO=∠BOC,∴∠DEA=∠B,∵OB=OC,∴∠OBC=∠OCB,∴∠DAE=∠DEA,∴AD=DE=,设半径为r,则OE=r,OD=r+,在Rt△AOD中,由勾股定理得,AD2+OA2=OD2,即()2+r2=(r+)2,解得r=2或r=0(舍去),即半径为2.【点评】本题考查圆周角定理,切线的判定和性质,直角三角形的边角关系以及等腰三角形,掌握切线的判定方法,直角三角形的边角关系是解决问题的前提.7.(2022•郴州)如图,在△ABC中,AB=AC.以AB为直径的⊙O与线段BC交于点D,过点D作DE⊥AC,垂足为E,ED的延长线与AB的延长线交于点P.(1)求证:直线PE是⊙O的切线;(2)若⊙O的半径为6,∠P=30°,求CE的长.【分析】(1)连接OD,根据AB=AC,OB=OD,得∠ACB=∠ODB,从而OD∥AC,由DE⊥AC,即可得PE⊥OD,故PE是⊙O的切线;(2)连接AD,连接OD,由DE⊥AC,∠P=30°,得∠PAE=60°,又AB=AC,可得△ABC是等边三角形,即可得BC=AB=12,∠C=60°,而AB是⊙O的直径,得∠ADB=90°,可得BD=CD=BC=6,在Rt△CDE中,即得CE的长是3.【解答】(1)证明:连接OD,如图:∵AB=AC,∴∠ABC=∠ACB,∵OB=OD,∴∠ABC=∠ODB,∴∠ACB=∠ODB,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,即PE⊥OD,∵OD是⊙O的半径,∴PE是⊙O的切线;(2)解:连接AD,连接OD,如图:∵DE⊥AC,∴∠AEP=90°,∵∠P=30°,∴∠PAE=60°,∵AB=AC,∴△ABC是等边三角形,∴∠C=60°,∵⊙O的半径为6,∴BC=AB=12,∵AB是⊙O的直径,∴∠ADB=90°,∴BD=CD=BC=6,在Rt△CDE中,CE=CD•cosC=6×cos60°=3,答:CE的长是3.【点评】本题考查圆的综合应用,涉及圆的切线,等腰三角形性质及应用,含特殊角的直角三角形三边关系等,解题的关键是判定△ABC是等边三角形.8.(2022•辽宁)如图,△ABC内接于⊙O,AC是⊙O的直径,过OA上的点P作PD⊥AC,交CB的延长线于点D,交AB于点E,点F为DE的中点,连接BF.(1)求证:BF与⊙O相切;(2)若AP=OP,cosA=,AP=4,求BF的长.【分析】(1)连接OB,根据直径所对的圆周角是直角可得∠ABC=90°,从而可得∠ABD=90°,进而利用直角三角形三角形斜边上的中线可得BF=EF=DE,然后利用等腰三角形的性质可得∠FEB=∠FBE,从而可得∠FBE=∠AEP,最后根据垂直定义可得∠EPA=90°,从而可得∠A+∠AEP=90°,再利用等腰三角形的性质可得∠A=∠OBA,从而可得∠OBA+∠FBE=90°,进而可得∠OBF=90°,即可解答;(2)在Rt△AEP中,利用锐角三角函数的定义求出AE的长,从而利用勾股定理求出PE的长,然后利用同角的余角相等可得∠AEP=∠C,从而可证△APE∽△DPC,进而利用相似三角形的性质可求出DP的长,最后求出DE的长,即可解答.【解答】(1)证明:连接OB,∵AC是⊙O的直径,∴∠ABC=90°,∴∠ABD=180°﹣∠ABC=90°,∵点F为DE的中点,∴BF=EF=DE,∴∠FEB=∠FBE,∵∠AEP=∠FEB,∴∠FBE=∠AEP,∵PD⊥AC,∴∠EPA=90°,∴∠A+∠AEP=90°,∵OA=OB,∴∠A=∠OBA,∴∠OBA+∠FBE=90°,∴∠OBF=90°,∵OB是⊙O的半径,∴BF与⊙O相切;(2)解:在Rt△AEP中,cosA=,AP=4,∴AE===5,∴PE===3,∵AP=OP=4,∴OA=OC=2AP=8,∴PC=OP+OC=12,∵∠A+∠AEP=90°,∠A+∠C=90°,∴∠AEP=∠C,∵∠APE=∠DPC=90°,∴△APE∽△DPC,∴=,∴=,∴DP=16,∴DE=DP﹣PE=16﹣3=13,∴BF=DE=,∴BF的长为.【点评】本题考查了解直角三角形,切线的判定与性质,圆周角定理,三角形的外接圆与外心,直线与圆的位置关系,熟练掌握解直角三角形,以及切线的判定与性质是解题的关键.9.(2022秋•黄埔区期末)如图1,⊙O为△ABC的外接圆,半径为6,AB=AC,∠BAC=120°,点D为优弧上异于B、C的一动点,连接DA、DB、DC.(1)求证:AD平分∠BDC;(2)如图2,CM平分∠BCD,且与AD交于M.花花同学认为:无论点D运动到哪里,始终有AM=AC;都都同学认为:AM的长会随着点D运动而变化.你贽同谁的观点,请说明理由.(3)求DA+DB+DC的最大值.【分析】(1)根据等弦对等弧,等弧或同弧所对圆周角相等,以此即可证明;(2)由同弧所对圆周角相等得∠ACB=∠BDA,由角平分线的性质得∠BCM=∠DCM,∠BDA=∠ADC,再根据三角形的外角性质得∠AMC=∠ADC+∠DCM=∠ACB+∠BCM=∠ACM,则AC=AM,以此即可求解;(3)在AD右侧作∠DAE=120°,与DC延长线交于点E,过点A作AF⊥CD于点F,由∠E=∠ADC=30°可得△ADE为等腰三角形,即可通过SAS证明△ABD≌△ACE,得到BD=CE,以此推出BD+CD=CE+CD=DE,在Rt△ADF中,∠ADC=30°,根据含30度角的直角三角形性质可得,则DE=2DF=,因此DA+DB+DC=DE+AD=,显然当AD为直径时取得最大值,以此即可求解.【解答】(1)证明:∵AB=AC,∴,∴∠BDA=∠ADC,∴AD平分∠BDC;(2)解:贽同花花的观点,理由如下:如图,连接BC,∵CM平分∠BCD,AD平分∠BDC,∴∠BCM=∠DCM,∠BDA=∠ADC,∵∠ACB=∠BDA,∴∠ACB=∠ADC,∴∠AMC=∠ADC+∠DCM=∠ACB+∠BCM=∠ACM,∴AC=AM,∴无论点D运动到哪里,始终有AM=AC;(3)解:如图,在AD右侧作∠DAE=120°,与DC延长线交于点E,过点A作AF⊥CD于点F,∵∠BAC=120°,∴∠BDC=180°﹣∠BAC=60°,∴∠ADC=30°,∴∠E=∠ADC=30°,∴AD=AE,∵∠BAD+∠DAC=∠DAC+∠CAE=120°,∴∠BAD=∠CAE,在△ABD和△ACE中,∴△ABD≌△ACE(SAS),∴BD=CE,∴BD+CD=CE+CD=DE,∵AF⊥CD,∴DE=2DF,在Rt△ADF中,∠ADC=30°,∴AD=2AF,∴AD2=AF2+DF2,即,∴,∴DE=2DF=,∴DA+DB+DC=DE+AD=,当AD为直径时,AD取得最大值,即AD=12,∴DA+DB+DC的最大值为.【点评】本题考查了圆周角定理、等腰三角形的性质、全等三角形的判定与性质、含30度角的直角三角形,熟练掌握并综合运用相关知识是解题关键.10.(2022秋•江都区月考)在半径为5的⊙O中,AB是直径,点C是直径AB上方半圆上一动点,连接AC、BC.(1)如图1,则△ABC面积的最大值是;(2)如图2,如果AC=8,①则BC=;②作∠ACB的平分线CP交⊙O于点P,求长CP的长.(3)如图3,连接AP并保持CP平分∠ACB,D为线段BC的中点,过点D作DH⊥AP,在C点运动过程中,请直接写出DH长的最大值.【分析】(1)利用三角形的底一定,高最大时三角形的面积最大,得到当AB边上的高为半径是三角形的面积取得最大值;(2)①利用圆周角定理和勾股定理解答即可;②过点B作BD⊥PC于点D,连接PB,利用等腰直角三角形的性质和相似三角形的判定与性质解答即可;(3)利用三角形的三边关系定理和垂径定理即可.【解答】解:(1)∵⊙O的半径为5,AB是直径,∴AB=10.∴当AB边上的高最大时,△ABC面积的最大,∵点C是直径AB上方半圆上一动点,∴当CO⊥AB时,即CO=5时,△ABC面积的最大,∴△ABC面积的最大值是AB•OC=10×5=25,故答案为:25.(2)①∵⊙O的半径为5,AB是直径,∴AB=10,∠BCA=90°,∴BC===6.故答案为:6;②过点B作BD⊥PC于点D,连接PB,PA,如图,∵CP为∠ACB的平分线,∠ACB=90°,∴∠ACP=∠BCP=45°,∴△CDB为等腰直角三角形,∴CD=BD.∵AB是直径,∴∠APB=90°,∵∠ABP=∠ACP=45°,∴△APB为等腰直角三角形,∴PB=AB=5.∵BD⊥PC,∴∠PDB=90°,∴∠PDB=∠ACB=90°,∵∠BPC=∠BAC,∴△PDB∽△ACB,∴,∵AC=8,BC=6,∴PD=4,BD=3,∴CD=BD=3,∴CP=PD+CD=4+3=7;(3)连接OD,OH,如图,∵D为线段BC的中点,∴OD⊥BC,∵DH≤OD+OH,∴当点D,O,H三点在一条直线上时,DH=OD+OH,DH取最大值.如图,∵CP平分∠ACB,∴.∵OD⊥BC,DH⊥AP,点D,O,H三点在一条直线上,∴BC∥AP,∴四边形APBC为正方形,∴DH=AC=5,∴DH长的最大值为5.【点评】本题主要考查了圆周角定理,圆的直径的性质,等腰直角三角形的性质,角平分线的定义,勾股定理,相似三角形的判定与性质,垂径定理,三角形的三边关系定理,熟练掌握元的有关性质是解题的关键.11.(2022秋•姑苏区校级期中)如图,已知半径为2的⊙O与直线l相切于点A,点P是直径AB左侧半圆上的动点,过点P作PC⊥l,垂足为点C,PC与⊙O交于点D,连接PA,PB,设PC的长为x(2<x<4).(1)当x=3时,求弦PA,PB的长度;(2)用含有x的代数式表示PD•CD,并求出当x为何值时,PD•CD的值最大?最大值是多少?【分析】(1)根据切线的性质得AB⊥l,则AB∥PC,所以∠CPA=∠PAB,再根据AB为⊙O的直径得到∠APB=90°,则可判断△PCA∽△APB,利用相似比可计算出AP,然后利用勾股定理可计算出PB;(2)如图,过O作OE⊥PD,垂足为E,根据垂径定理得到PE=ED,易得四边形OECA为矩形,则CE=OA=2,所以PE=ED=x﹣2,接着表示出PD和CD,然后根据二次函数的性质求解.【解答】解:(1)∵⊙O与直线l相切于点A,AB为⊙O的直径,∴AB⊥l,又∵PC⊥l,∴AB∥PC,∴∠CPA=∠PAB,∵AB为⊙O的直径,∴∠APB=90°,∴∠PCA=∠APB,∴△PCA∽△APB,∴PC:AP=AP:AB,∵PC=x=3,∴3:AP=AP:4,∴AP=2,在Rt△APB中,PB==2;(2)如图,过O作OE⊥PD,垂足为E,∵PD是⊙O的弦,OE⊥PD,∴PE=ED,在矩形OECA中,CE=OA=2,∴PE=ED=x﹣2,∴CD=PC﹣PD=x﹣2(x﹣2)=4﹣x,∴PD•PC=2(x﹣2)•(4﹣x)=﹣2x2+12x﹣16=﹣2(x﹣3)2+2,∵2<x<4,∴当x=3时,PD•CD的值最大,最大值为2.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了相似三角形的判定与性质和二次函数的性质.12.(2022•嵩县模拟)如图,Rt△ABC的中,∠BAC=90°,AB=4cm,AC=3cm,点G是边AB上一动点,以AG为直径的⊙O交CG于点D,E是边AC的中点,连接DE.(1)求证:DE与⊙O相切;(2)填空:①当AG=3cm时,⊙O与直线BC相切;②当点G在边AB上移动时,△CDE面积的最大值是cm2.【分析】(1)连接AD,OD,利用圆周角定理,直角三角形的两个锐角互余,直角三角形斜边上的中线等于斜边的一半,同圆的半径相等和等腰三角形的性质以及圆的切线的判定定理解答即可;(2)①设⊙O与BC相切于点F,连接OF,设OA=OG=rcm,则AG=2rcm,OF=rcm,BO=(4﹣r)cm,利用切线的性质定理和相似三角形的判定与性质列出比例式求得r值,则结论可得;②利用直角三角形斜边上的中线等于斜边的一半和高相等的三角形的面积的关系可得,则得当△ADC面积最大时满足题意;由题意求得△ADC的面积最大值则结论可求.【解答】(1)证明:连接AD,OD,如图,∵AG为⊙O的直径,∴AD⊥CG,∴∠AGD+∠DAG=90°.∵∠BAC=90°,∴∠DAG+∠CAD=90°∴∠AGD=∠CAD.∵AD⊥CD,E是边AC的中点,∴DE=AE=AC.∴∠EDA=∠CAD,∴∠EDA=∠AGD.∴OG=OD,∴∠AGD=∠ODG,∴∠ODG=ADE.∵∠ADG=90°,∴∠ODG+ODA=90°,∴∠ODA+∠ADE=90°,即∠ODE=90°,∴OD⊥DE,∵OD为⊙O的半径,∴DE与⊙O相切;(2)解:①设⊙O与BC相切于点F,连接OF,如图,设OA=OG=rcm,则AG=2rcm,OF=rcm,BO=(4﹣r)cm,∵∠BAC=90°,AB=4cm,AC=3cm,∴BC==5cm.∵⊙O与BC相切,∴OF⊥BC,∴∠BFO=∠BAC=90°,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论