专题04勾股定理在几何最短路径问题中的应用(题型与解法)(原卷版)_第1页
专题04勾股定理在几何最短路径问题中的应用(题型与解法)(原卷版)_第2页
专题04勾股定理在几何最短路径问题中的应用(题型与解法)(原卷版)_第3页
专题04勾股定理在几何最短路径问题中的应用(题型与解法)(原卷版)_第4页
专题04勾股定理在几何最短路径问题中的应用(题型与解法)(原卷版)_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题04勾股定理在几何最短路径问题中的应用最短路线问题通常是以“平面内连结两点的线中,线段最短”为原则引申出来的.人们在生产、生活实践中,常常遇到带有某种限制条件的最近路线即最短路线问题.对于数学中的最短路线问题可以分为两大类:第一类为在同一平面内;第二类为空间几何体中的最短路线问题,对于平面内的最短路线问题可先画出方案图,然后确定最短距离及路径图。对于几何题内问题的关键是将立体图形转化为平面问题求解,然后构造直角三角形,利用勾股定理求解.最短路径问题在中学教学中是个难点,本文结合中学数学中常见的几类最短路程问题,用实例从知识的趣味性、实际生活中的应用等方面探讨了最短路线的简单应用。希望能给学生培养空间想象能力及动手动脑探究数学问题的思想、学会“转化思想”的方法,找出问题的实质,达到解决问题的目的。这样有助于学生充分去体会数学中的有趣知识,从兴趣出发学到有用的数学。方法总结:①解决立体图形中最短距离问题的关键是把立体图形平面化,即把立体图形沿着某一条线展开,转化为平面问题后,借助“两点之间,线段最短”或“垂线段最短”,进而构造直角三角形,借助勾股定理求解.②平面图形的最短路径通常是作轴对称变换,转化为“两点之间线段最短”的模型来解决问题.常见的有圆柱体的展开、长方体的展开、楼梯的展开、绕绳的展开等等,下面我们就通过一些典型的例题对这些问题逐一讲解.如图,有一圆柱体如图,高8cm,底面半径5cm,A处有一蚂蚁,若蚂蚁欲爬行到C处,求蚂蚁爬行的最短距离.(π取3)如图21,是一个三级台阶,它的每一级的长宽和高分别为20、3、2,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是.如图31是一个长方体,一只蚂蚁如果沿长方体的表面从A点爬到B′点,那么沿哪条路最近,最短的路程是多少?(长方体的长2cm、宽为1cm、高为4cm)如图41,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AB边上一点,若AE=2,求EM+BM的最小值.图41如图51所示一棱长为3cm的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm,假设一只蚂蚁每秒爬行2cm,则它从下底面点A沿表面爬行至侧面的B点,最少要用秒钟.图51如图61,一只蚂蚁沿着图示的路线从圆柱高AA1的端点A到达A1,若圆柱底面半径为,高为5,则蚂蚁爬行的最短距离为.图61我国古代有这样一道数学问题:枯木一根直立地上高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?题意是:如图71所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是尺.

图71如图81所示,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在杯子外面的长度为hcm,则h的取值范围是.图81如图91,是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行的部分的截面是半径为10m的半圆,其边缘AB=CD=30m.小明要在AB上选取一点E,能够使他从点D滑到点E再到点C的滑行距离最短,则他滑行的最短距离为__________m.(π取3)图91如图101,已知AB=20,DA⊥AB于点A,CB⊥AB于点B,DA=10,CB=5.(1)在AB上找一点E,使EC=ED,并求出EA的长;(2)在AB上找一点F,使FC+FD最小,并求出这个最小值.图101如图111,在△ABC中,∠C=90°,∠BAC=30°,AB=,AD平分∠BAC,点P、Q分别是AB、AD边上的动点,则PQ+BQ的最小值是 题1111.如图,开口玻璃罐长、宽、高分别为16、6和6,在罐内点E处有一小块饼干碎末,此时一只蚂蚁正好在罐外长方形的中心H处,蚂蚁到达饼干的最短距离是多少()A. B. C. D.172.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为,在容器内壁离容器底部的点处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿的点处,若蚂蚁吃到蜂蜜需爬行的最短路径为,则该圆柱底面周长为(

)A. B. C. D.3.固定在地面上的一个正方体木块(如图①),其棱长为,沿其相邻三个面的对角线(图中虚线)去掉一角,得到如图②所示的几何体木块,一只蚂蚁沿着该木块的表面从点A爬行到点B的最短路程为(

)A. B. C. D.4.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A. B.25 C. D.355.如图,点是棱长为的正方体的一个顶点,点是一条棱的中点,将正方体按图中所示展开,则在展开图中两点间的距离为()A. B. C. D.6.如图是一个长方体盒子,其长、宽、高分别为4,2,9,用一根细线绕侧面绑在点A,B处,不计线头,细线的最短长度为(

)A.12 B.15 C.18 D.217.有一个如图所示的上底面是敞口的长方体透明玻璃鱼缸,其长,高,宽,在顶点处有一块面包屑,一只蚂蚁想从鱼缸外的点沿鱼缸侧面吃面包屑,蚂蚁爬行的最短路线长是(

).A. B.C. D.8.如图,在长方体盒子中,已知,长为的细直木棒恰好从小孔G处插入,木棒的一端I与底面接触,当木棒的端点I在长方形内及边界运动时,长度的最小值为(

)A. B. C. D.9.小强家因装修准备用电梯搬运一些木条上楼,如图,已知电梯的长、宽、高分别是,,,那么电梯内能放入这些木条的最大长度是______10.如图,正方体的棱长为3cm,已知点B与点C间的距离为1cm,一只蚂蚁沿着正方体的表面从点A爬到点C,需要爬行的最短距离为_________.11.如图,在平面直角坐标系中,,,,M,N是线段上的两个动点,且,则与周长和的最小值是______.12.如图,若圆柱的底面半径是,高是,从圆柱底部处沿侧面缠绕一圈丝线到顶部处,则这条丝线的最小长度是__________.13.如图是一个三级台阶,它的每一级的长、宽、高分别为7寸、5寸和3寸,A和B是这个台阶的两个相对端点,A点上有一只蚂蚁想到B点去吃可口的食物,则它所走的最短路线长度是__________寸.14.在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为________(π取3)15.如图,圆柱底面半径为,高为,点A,B分别是圆柱两底面圆周上的点,且A,B在同一条竖直直线上,用一根棉线从A点顺着圆柱侧面绕3圈到B点,则这根棉线的长度最短为___________cm.16.棱长分别为两个正方体如图放置,点P在上,且,一只蚂蚁如果要沿着长方体的表面从点A爬到点P,需要爬行的最短距离是______.17.如图,已知圆柱底面的周长为8dm,圆柱高为4dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长的最小值的平方为_____dm.18.如图,圆柱形玻璃杯高为,底面周长为,在杯内壁离杯上沿的点处粘有一粒面包渣,此时一只蚂蚁正好在杯外壁,离杯底与面包渣相对的点处,则蚂蚁从外壁处到内壁处的最短距离为_________(杯壁厚度不计).19.初中几何的学习始于空间的“实物和具体模型”,聚焦平面的“几何图形的特征和运用”,形成了空间几何问题要转化为平面几何问题的解题策略.问题提出:如图所示是放在桌面上的一个圆柱体,一只蚂蚁从点出发沿着圆柱体的表面爬行到点,如何求最短路程呢?(1)问题分析:蚂蚁从点出发沿着圆柱体的表面爬行到点,可以有几条路径?在图中画出来;(2)问题探究:①若圆柱体的底面圆的周长为,高为,蚂蚁从点出发沿着圆柱体的表面爬行到点,求最短路程;②若圆柱体的底面圆的周长为,高为,蚂蚁从点出发沿着圆柱体的表面爬行到点,求最短路程;③若圆柱体的底面圆的半径为,高为,一只蚂蚁从点出发沿着圆柱体的表面爬行到点,求最短路程.20.如图,A,B两个村庄在河CD的同侧,两村庄的距

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论