版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第15讲三角形全等的判定【学习目标】1.理解和掌握全等三角形判定方法1——“边角边”,判定方法2——“角边角”,判定方法3——“角角边”;能运用它们判定两个三角形全等.2.能把证明角相等或线段相等的问题,转化为证明它们所在的两个三角形全等.3.理解和掌握全等三角形判定方法4——“边边边”;4.能把证明角相等或线段相等的问题,转化为证明它们所在的两个三角形全等.5.探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式;6.理解和掌握判定直角三角形全等的一种特殊方法——“斜边,直角边”(即“HL”).7.能熟练地用判定一般三角形全等的方法及判定直角三角形的特殊方法判定两个直角三角形全等.【基础知识】一、全等三角形判定1——“边角边”1.全等三角形判定1——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).要点诠释:如图,如果AB=,∠A=∠,AC=,则△ABC≌△.注意:这里的角,指的是两组对应边的夹角.2.有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC与△ABD中,AB=AB,AC=AD,∠B=∠B,但△ABC与△ABD不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.二、全等三角形判定2——“角边角”全等三角形判定2——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).要点诠释:如图,如果∠A=∠,AB=,∠B=∠,则△ABC≌△.三、全等三角形判定3——“角角边”1.全等三角形判定3——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC和△ADE中,如果DE∥BC,那么∠ADE=∠B,∠AED=∠C,又∠A=∠A,但△ABC和△ADE不全等.这说明,三个角对应相等的两个三角形不一定全等.四、如何选择三角形证全等1.可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;2.可以从已知出发,看已知条件确定证哪两个三角形全等;3.由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;4.如果以上方法都行不通,就添加辅助线,构造全等三角形.五、全等三角形判定4——“边边边”全等三角形判定4——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS”).要点诠释:如图,如果=AB,=AC,=BC,则△ABC≌△.六、判定方法的选择1.选择哪种判定方法,要根据具体的已知条件而定,见下表:已知条件可选择的判定方法一边一角对应相等SASAASASA两角对应相等ASAAAS两边对应相等SASSSS七、如何选择三角形证全等1.可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;2.可以从已知出发,看已知条件确定证哪两个三角形全等;3.由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;4.如果以上方法都行不通,就添加辅助线,构造全等三角形.八、全等三角形证明方法全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形、相似图形、圆等图形性质的有力工具,是解决与线段、角相关问题的一个出发点.运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.可以适当总结证明方法.1.证明线段相等的方法:(1)证明两条线段所在的两个三角形全等.(2)利用角平分线的性质证明角平分线上的点到角两边的距离相等.(3)等式性质.2.证明角相等的方法:(1)利用平行线的性质进行证明.(2)证明两个角所在的两个三角形全等.(3)利用角平分线的判定进行证明.(4)同角(等角)的余角(补角)相等.(5)对顶角相等.3.证明两条线段的位置关系(平行、垂直)的方法;可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明.4.辅助线的添加:(1)作公共边可构造全等三角形;(2)倍长中线法;(3)作以角平分线为对称轴的翻折变换全等三角形;(4)利用截长(或补短)法作旋转变换的全等三角形.5.证明三角形全等的思维方法:(1)直接利用全等三角形判定和证明两条线段或两个角相等,需要我们敏捷、快速地发现两条线段和两个角所在的两个三角形及它们全等的条件.(2)如果要证明相等的两条线段或两个角所在的三角形全等的条件不充分时,则应根据图形的其它性质或先证明其他的两个三角形全等以补足条件.(3)如果现有图形中的任何两个三角形之间不存在全等关系,此时应添置辅助线,使之出现全等三角形,通过构造出全等三角形来研究平面图形的性质.九、三角形的稳定性三角形的三条边确定后,三角形的形状和大小就确定不变了,这个性质叫做三角形的稳定性。要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.
(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.
(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在门框未安好之前,先在门框上斜着钉一根木板,使它不变形.十、判定直角三角形全等的一般方法由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS”,“ASA”或“SAS”判定定理.十一、判定直角三角形全等的特殊方法——斜边,直角边定理在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).这个判定方法是直角三角形所独有的,一般三角形不具备.要点诠释:(1)“HL”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS、ASA、AAS、SSS、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt”.【考点剖析】考点一:使三角形全等所需添加的条件.1.根据下列已知条件,能唯一画出的是()A.,, B.,C.,, D.,,考点二:灵活选用判定方法证全等.2.如图,,,,,则等于()A. B. C. D.考点三:三角形全等的证明3.如图,已知AB=DB,BC=BE,,由这三个条件,就可得出△ABE≌△DBC,依据的判定方法是()A.边边边 B.边角边C.角边角 D.角角边【真题演练】1.如图,有一块三角形玻璃,小明不小心将它打破.带上这块玻璃,能配成同样大小的一块,其理由是()A. B. C. D.2.下列给出的简记中,不能判定两个三角形全等的是()A. B. C. D.3.下列说法正确的是()A.形状相同的两个三角形全等 B.两边和一角对应相等的两个三角形全等C.三个角对应相等的两个三角形全等 D.两条直角边对应相等的两个直角三角形全等4.下列所给的四组条件中,能作出唯一三角形的是()A.BC=3cm,AC=5cm,∠B=90° B.AB=2cm,BC=6cm,AC=4cmC.∠A=∠B=∠C=60° D.AB=4cm,AC=6cm,∠C=30°5.根据下列已知条件,不能唯一画出的是()A. B.C. D.6.根据下列已知条件,不能唯一画出的是()A.,, B.,,C.,, D.,,7.下列方法中,不能判定三角形全等的是()A.AAA B.SSS C.ASA D.SAS8.下列判定直角三角形全等的方法,不正确的是()A.两条直角边对应相等 B.两个锐角对应相等C.斜边和一直角边对应相等 D.斜边和一锐角对应相等【过关检测】1.课本上运用尺规作图:作一个角等于已知角,其作图的依据是()A. B. C. D.2.等腰△ABC中,AB=AC,∠A的平分线交BC于点D,有下列结论:①AD⊥BC;②BD=DC;③∠B=∠C;④∠BAD=∠CAD,其中正确的结论个数是().A.4个 B.3个 C.2个 D.1个3.在和中,已知,,添加下列条件中的一个,不能使一定成立的是()A. B. C. D.4.“三角形具有稳定性”这个事实说明了()A.SAS B.ASA C.AAS D.SSS5.在△ABC与△DEF中,下列六个条件中:①AB=DE;②BC=EF;③AC=DF;④∠A=∠D;⑤∠B=∠E;⑥∠C=∠F,不能判断△ABC与△DEF全等的是()A.①②④ B.①②③ C.④⑥① D.②③⑥6.下列条件不可推得和全等的条件是()A.,, B.,,C.,, D.,,7.已知:在△ABC和△DEF中,∠B=∠E,∠C=∠F,在下列条件中,增加以后能证明△ABC≌△DEF的条件是()A.AB=DF B.BC=DF C.BC=EF D.AC=DE8.在下列命题中,是假命题的个数有()①如果,那么.②两条直线被第三条直线所截,同位角相等③面积相等的两
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年计算机科学与技术专业求职简历
- DB33T 2175.3-2018 人民法院诉讼服务规范 第3部分:热线服务
- 2025委托加工合同书
- 建设年产8000台智能化高效节水喷灌设备项目建议书立项备案审批
- 2024年度天津市公共营养师之三级营养师真题练习试卷A卷附答案
- 2024年度天津市公共营养师之二级营养师每日一练试卷B卷含答案
- 2024年度四川省公共营养师之四级营养师综合练习试卷B卷附答案
- 2024年度四川省公共营养师之三级营养师能力检测试卷B卷附答案
- 2024年度四川省公共营养师之二级营养师高分通关题型题库附解析答案
- 2019-2025年中国真丝化纤纺织品制造行业市场调查研究及投资前景预测报告
- 水利水电工程安全管理制度例文(三篇)
- 人教版2024-2025学年第一学期八年级物理期末综合复习练习卷(含答案)
- 《上帝掷骰子吗:量子物理史话》导读学习通超星期末考试答案章节答案2024年
- 病例报告表(CRF)模板
- 塔塔里尼调压器FLBM5介绍.ppt
- 国家开放大学毕业生登记表
- CCC例行检验和确认检验程序
- 初中物理竞赛教程(基础篇)第16讲比热容
- 亲子鉴定书(共3页)
- 容器支腿计算公式(支腿计算主要用于立式容器的支腿受力及地脚螺栓计算)
- 建设工程项目施工安全管理流程图3页
评论
0/150
提交评论