专题18圆解答题归类-三年(2020-2022)中考数学真题分项汇编(四川专用)(原卷版+解析)_第1页
专题18圆解答题归类-三年(2020-2022)中考数学真题分项汇编(四川专用)(原卷版+解析)_第2页
专题18圆解答题归类-三年(2020-2022)中考数学真题分项汇编(四川专用)(原卷版+解析)_第3页
专题18圆解答题归类-三年(2020-2022)中考数学真题分项汇编(四川专用)(原卷版+解析)_第4页
专题18圆解答题归类-三年(2020-2022)中考数学真题分项汇编(四川专用)(原卷版+解析)_第5页
已阅读5页,还剩108页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题18圆解答题归类1.(2022·四川广安·中考真题)如图,AB为⊙O的直径,D、E是⊙O上的两点,延长AB至点C,连接CD,∠BDC=∠BAD.(1)求证:CD是⊙O的切线.(2)若tan∠BED=,AC=9,求⊙O的半径.2.(2022·四川广元·中考真题)在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于点D,点E是边BC的中点,连结DE.(1)求证:DE是⊙O的切线;(2)若AD=4,BD=9,求⊙O的半径.3.(2021·四川乐山·中考真题)如图,已知点是以为直径的圆上一点,是延长线上一点,过点作的垂线交的延长线于点,连结,且.(1)求证:是的切线;(2)若,,求的半径.4.(2020·四川凉山·中考真题)如图,AB是半圆AOB的直径,C是半圆上的一点,AD平分交半圆于点D,过点D作与AC的延长线交于点H.(1)求证:DH是半圆的切线;(2)若,,求半圆的直径.5.(2022·四川宜宾·中考真题)如图,点C是以AB为直径的上一点,点D是AB的延长线上一点,在OA上取一点F,过点F作AB的垂线交AC于点G,交DC的延长线于点E,且.(1)求证:DE是的切线;(2)若点F是OA的中点,,,求EC的长.6.(2021·四川德阳·中考真题)如图,已知:AB为⊙O的直径,⊙O交△ABC于点D、E,点F为AC的延长线上一点,且∠CBF∠BOE.(1)求证:BF是⊙O的切线;(2)若AB=4,∠CBF=45°,BE=2EC,求AD和CF的长.7.(2021·四川南充·中考真题)如图,A,B是上两点,且,连接OB并延长到点C,使,连接AC.(1)求证:AC是的切线.(2)点D,E分别是AC,OA的中点,DE所在直线交于点F,G,,求GF的长.8.(2021·四川广元·中考真题)如图,在Rt中,,是的平分线,以为直径的交边于点E,连接,过点D作,交于点F.(1)求证:是的切线;(2)若,,求线段的长.9.(2021·四川广安·中考真题)如图,是的直径,点在上,的平分线交于点,过点作,交的延长线于点,延长、相交于点.(1)求证:是的切线;(2)若的半径为5,,求的长.10.(2021·四川资阳·中考真题)如图,在中,,以为直径的交于点D,交的延长线于点E,交于点F.(1)求证:是的切线;(2)若,求的长.11.(2020·四川广安·中考真题)如图,AB是⊙O的直径,点E在AB的延长线上,AC平分∠DAE交⊙O于点C,AD⊥DE于点D.(l)求证:直线DE是⊙O的切线.(2)如果BE=2,CE=4,求线段AD的长.12.(2022·四川南充·中考真题)如图,为的直径,点C是上一点,点D是外一点,,连接交于点E.(1)求证:是的切线.(2)若,求的值.13.(2021·四川雅安·中考真题)如图,在⊙中,是直径,,垂足为P,过点的的切线与的延长线交于点,连接.(1)求证:为⊙的切线;(2)若⊙半径为3,,求.14.(2022·四川乐山·中考真题)如图,线段AC为⊙O的直径,点D、E在⊙O上,=,过点D作DF⊥AC,垂足为点F.连结CE交DF于点G.(1)求证:CG=DG;(2)已知⊙O的半径为6,,延长AC至点B,使.求证:BD是⊙O的切线.15.(2021·四川巴中·中考真题)如图,ABC内接于⊙O,且AB=AC,其外角平分线AD与CO的延长线交于点D.(1)求证:直线AD是⊙O的切线;(2)若AD=2,BC=6,求图中阴影部分面积.16.(2021·四川达州·中考真题)如图,是的直径,为上一点(不与点,重合)连接,,过点作,垂足为点.将沿翻折,点落在点处得,交于点.(1)求证:是的切线;(2)若,,求阴影部分面积.17.(2021·四川凉山·中考真题)如图,在中,,AE平分交BC于点E,点D在AB上,.是的外接圆,交AC于点F.(1)求证:BC是的切线;(2)若的半径为5,,求.18.(2022·四川雅安·中考真题)如图,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分线,以O为圆心,OC为半径作⊙O与直线AO交于点E和点D.(1)求证:AB是⊙O的切线;(2)连接CE,求证:△ACE∽△ADC;(3)若=,⊙O的半径为6,求tan∠OAC.19.(2022·四川遂宁·中考真题)如图,是的外接圆,点O在BC上,的角平分线交于点D,连接BD,CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是的切线;(2)求证:∽;(3)若,,求点O到AD的距离.20.(2021·四川内江·中考真题)如图,是的直径,、是上两点,且,过点的直线交的延长线于点,交的延长线于点,连接、交于点.(1)求证:是的切线;(2)若,的半径为2,求阴影部分的面积;(3)连结,在(2)的条件下,求的长.21.(2022·四川德阳·中考真题)如图,是的直径,是的弦,,垂足是点,过点作直线分别与,的延长线交于点,,且.(1)求证:是的切线;(2)如果,,①求的长;②求的面积.22.(2021·四川遂宁·中考真题)如图,⊙O的半径为1,点A是⊙O的直径BD延长线上的一点,C为⊙O上的一点,AD=CD,∠A=30°.(1)求证:直线AC是⊙O的切线;(2)求△ABC的面积;(3)点E在上运动(不与B、D重合),过点C作CE的垂线,与EB的延长线交于点F.①当点E运动到与点C关于直径BD对称时,求CF的长;②当点E运动到什么位置时,CF取到最大值,并求出此时CF的长.23.(2021·四川成都·中考真题)如图,为的直径,C为上一点,连接,D为延长线上一点,连接,且.(1)求证:是的切线;(2)若的半径为,的面积为,求的长;(3)在(2)的条件下,E为上一点,连接交线段于点F,若,求的长.24.(2020·四川·中考真题)如图,在⊙O中,弦AB与直径CD垂直,垂足为M,CD的延长线上有一点P,满足∠PBD=∠DAB.过点P作PN⊥CD,交OA的延长线于点N,连接DN交AP于点H.(1)求证:BP是⊙O的切线;(2)如果OA=5,AM=4,求PN的值;(3)如果PD=PH,求证:AH•OP=HP•AP.25.(2020·四川绵阳·中考真题)如图,△ABC内接于⊙O,点D在⊙O外,∠ADC=90°,BD交⊙O于点E,交AC于点F,∠EAC=∠DCE,∠CEB=∠DCA,CD=6,AD=8.(1)求证:AB∥CD;(2)求证:CD是⊙O的切线;(3)求tan∠ACB的值.26.(2020·四川内江·中考真题)如图,AB是⊙O的直径,C是⊙O上一点,于点D,过点C作⊙O的切线,交OD的延长线于点E,连结BE.(1)求证:BE是⊙O的切线;(2)设OE交⊙O于点F,若,求线段EF的长;(3)在(2)的条件下,求阴影部分的面积.27.(2020·四川广元·中考真题)在中,,OA平分交BC于点O,以O为圆心,OC长为半径作圆交BC于点D.(1)如图1,求证:AB为的切线;(2)如图2,AB与相切于点E,连接CE交OA于点F.①试判断线段OA与CE的关系,并说明理由.②若,求的值.28.(2020·四川成都·中考真题)如图,在的边上取一点,以为圆心,为半径画⊙O,⊙O与边相切于点,,连接交⊙O于点,连接,并延长交线段于点.(1)求证:是⊙O的切线;(2)若,,求⊙O的半径;(3)若是的中点,试探究与的数量关系并说明理由.29.(2020·四川遂宁·中考真题)如图,在Rt△ABC中,∠ACB=90°,D为AB边上的一点,以AD为直径的⊙O交BC于点E,交AC于点F,过点C作CG⊥AB交AB于点G,交AE于点H,过点E的弦EP交AB于点Q(EP不是直径),点Q为弦EP的中点,连结BP,BP恰好为⊙O的切线.(1)求证:BC是⊙O的切线.(2)求证:=.(3)若sin∠ABC═,AC=15,求四边形CHQE的面积.30.(2020·四川乐山·中考真题)如图1,是半圆的直径,是一条弦,是上一点,于点,交于点,连结交于点,且.(1)求证:点平分;(2)如图2所示,延长至点,使,连结.若点是线段的中点.求证:是⊙的切线.31.(2020·四川自贡·中考真题)如图,⊙是△的外接圆,为直径,点是⊙外一点,且,连接交于点,延长交⊙于点.⑴.证明:=;⑵.若,证明:是⊙的切线;⑶.在⑵的条件下,连接交⊙于点,连接;若,求的长.

32.(2022·四川攀枝花·中考真题)如图,的直径垂直于弦于点F,点P在的延长线上,与相切于点C.(1)求证:;(2)若的直径为4,弦平分半径,求:图中阴影部分的面积.33.(2022·四川成都·中考真题)如图,在中,,以为直径作⊙,交边于点,在上取一点,使,连接,作射线交边于点.(1)求证:;(2)若,,求及的长.34.(2020·四川泸州·中考真题)如图,是的直径,点D在上,的延长线与过点B的切线交于点C,E为线段上的点,过点E的弦于点H.(1)求证:;(2)已知,,且,求的长.35.(2021·四川阿坝·中考真题)如图,AB是⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.(1)求证:;(2)若,,求CD的长.36.(2022·四川·巴中市教育科学研究所中考真题)四边形内接于,直径与弦交于点,直线与相切于点.(1)如图1,若,且,求证:平分;(2)如图2,连接,若,求证:.37.(2022·四川泸州·中考真题)如图,点在以为直径的上,平分交于点,交于点,过点作的切线交的延长线于点.(1)求证:;(2)若,,求的长.38.(2022·四川绵阳·中考真题)如图,AB为⊙O的直径,C为圆上的一点,D为劣弧的中点,过点D作⊙O的切线与AC的延长线交于点P,与AB的延长线交于点F,AD与BC交于点E.(1)求证:;(2)若⊙O的半径为,DE=1,求AE的长度;(3)在(2)的条件下,求的面积.39.(2022·四川眉山·中考真题)如图,为的直径,点是上一点,与相切于点,过点作,连接,.(1)求证:是的角平分线;(2)若,,求的长;(3)在(2)的条件下,求阴影部分的面积.40.(2021·四川绵阳·中考真题)如图,四边形是⊙的内接矩形,过点的切线与的延长线交于点,连接与交于点,,.(1)求证:;(2)设,求的面积(用的式子表示);(3)若,求的长.41.(2020·四川南充·中考真题)如图,点A,B,C是半径为2的⊙O上三个点,AB为直径,∠BAC的平分线交圆于点D,过点D作AC的垂线交AC得延长线于点E,延长线ED交AB得延长线于点F.(1)判断直线EF与⊙O的位置关系,并证明.(2)若DF=,求tan∠EAD的值.42.(2022·四川凉山·中考真题)如图,已知半径为5的⊙M经过x轴上一点C,与y轴交于A、B两点,连接AM、AC,AC平分∠OAM,AO+CO=6(1)判断⊙M与x轴的位置关系,并说明理由;(2)求AB的长;(3)连接BM并延长交圆M于点D,连接CD,求直线CD的解析式.43.(2022·四川内江·中考真题)如图,△ABC内接于⊙O,AB是⊙O的直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于点E,交PC于点F,连接AF.(1)判断直线AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为6,AF=2,求AC的长;(3)在(2)的条件下,求阴影部分的面积.44.(2021·四川宜宾·中考真题)如图1,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若tan∠ADC=,AC=2,求⊙O的半径;(3)如图2,在(2)的条件下,∠ADB的平分线DE交⊙O于点E,交AB于点F,连结BE.求sin∠DBE的值.45.(2021·四川自贡·中考真题)如图,点D在以AB为直径的⊙O上,过D作⊙O的切线交AB延长线于点C,于点E,交⊙O于点F,连接AD,FD.(1)求证:;(2)求证:;(3)若,,求EF的长.46.(2021·四川遂宁·中考真题)已知平面直角坐标系中,点P()和直线Ax+By+C=0(其中A,B不全为0),则点P到直线Ax+By+C=0的距离可用公式来计算.例如:求点P(1,2)到直线y=2x+1的距离,因为直线y=2x+1可化为2x-y+1=0,其中A=2,B=-1,C=1,所以点P(1,2)到直线y=2x+1的距离为:.根据以上材料,解答下列问题:(1)求点M(0,3)到直线的距离;(2)在(1)的条件下,⊙M的半径r=4,判断⊙M与直线的位置关系,若相交,设其弦长为n,求n的值;若不相交,说明理由.47.(2020·四川凉山·中考真题)如图,的半径为R,其内接锐角三角形ABC中,、、所对的边分别是a、b、c(1)求证:(2)若,,,利用(1)的结论求AB的长和的值48.(2020·四川雅安·中考真题)如图,四边形内接于圆,,对角线平分.(1)求证:是等边三角形;(2)过点作交的延长线于点,若,求的面积.49.(2020·四川宜宾·中考真题)如图,已知AB是圆O的直径,点C是圆上异于A,B的一点,连接BC并延长至点D,使得,连接AD交于点E,连接BE.(1)求证:是等腰三角形;(2)连接OC并延长,与B以为切点的切线交于点F,若,求的长.50.(2020·四川巴中·中考真题)如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,交AB的延长线于点E,AC平分.且,.(1)求证:;(2)若点P为线段CE上一动点,当与相似时,求EP的长.专题18圆解答题归类1.(2022·四川广安·中考真题)如图,AB为⊙O的直径,D、E是⊙O上的两点,延长AB至点C,连接CD,∠BDC=∠BAD.(1)求证:CD是⊙O的切线.(2)若tan∠BED=,AC=9,求⊙O的半径.【答案】(1)见详解(2)【分析】(1)连接OD,只要证明,则有,即可证明结论成立;(2)由圆周角定理,求得,然后证明△ACD∽△DCB,求出CD的长度,再根据勾股定理,即可求出答案.(1)证明:连接OD,如图∵AB为⊙O的直径,∴,∴,∵OA=OD,∴,∵∠BDC=∠BAD,∴,∴,∴,∴CD是⊙O的切线.(2)解:∵,∴,∵△ABD是直角三角形,∴,∵,,∴△ACD∽△DCB,∴,∵,∴,∴,在直角△CDO中,设⊙O的半径为,则,∴,解得:;∴⊙O的半径为;【点睛】本题考查了圆周角定理,切线的判定定理,勾股定理,相似三角形的判定和性质等知识,解题的关键是熟练掌握所学的知识,正确的理解题意,从而进行解题.2.(2022·四川广元·中考真题)在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于点D,点E是边BC的中点,连结DE.(1)求证:DE是⊙O的切线;(2)若AD=4,BD=9,求⊙O的半径.【答案】(1)见详解(2)【分析】(1)连接OD,OE,由题意易得OE∥AB,∠A=∠ODA,则有∠A=∠COE=∠DOE=∠ODA,然后可得△COE≌△DOE,进而问题可求证;(2)连接CD,由题意易得∠ADC=90°,然后可证△ADC∽△CDB,则有,进而可得CD=6,最后利用勾股定理可求解.(1)证明:连接OD,OE,如图所示:∵,∴∠A=∠ODA,∵点E是边BC的中点,∴OE∥AB,∴∠DOE=∠ODA,∠A=∠COE,∴∠DOE=∠COE,∵,∴△COE≌△DOE(SAS),∵∠ACB=90°,∴∠ODE=∠ACB=90°,∴DE是⊙O的切线;(2)解:连接CD,如图所示:∵AC是⊙O的直径,∴∠ADC=∠CDB=90°,∴∠A+∠ACD=∠ACD+∠DCB=90°,∴∠A=∠DCB,∴△ADC∽△CDB,∴,即,∵AD=4,BD=9,∴,∴,在Rt△ADC中,由勾股定理得:,∴⊙O的半径为.【点睛】本题主要考查切线的判定、相似三角形的性质与判定及勾股定理,熟练掌握切线的判定、相似三角形的性质与判定及勾股定理是解题的关键.3.(2021·四川乐山·中考真题)如图,已知点是以为直径的圆上一点,是延长线上一点,过点作的垂线交的延长线于点,连结,且.(1)求证:是的切线;(2)若,,求的半径.【答案】(1)见解析;(2)【分析】(1)连接、,根据已知条件证明,即可得解;(2)由(1)可得,得到,令,根据正切的定义列式求解即可;【详解】解:(1)证明:连结、.∵,,∴,.∵,∴,∴,,∴,∴,即是的切线.(2)由(1)知,,又,∴,∴,即.令,∴.即,即.∵,即,∴,解得或(舍),∴的半径为.【点睛】本题主要考查了圆的综合运用,结合相似三角形的判定与性质、正切的定义求解是解题的关键.4.(2020·四川凉山·中考真题)如图,AB是半圆AOB的直径,C是半圆上的一点,AD平分交半圆于点D,过点D作与AC的延长线交于点H.(1)求证:DH是半圆的切线;(2)若,,求半圆的直径.【答案】(1)见详解;(2)12【分析】(1)连接OD,先证明OD∥AH,然后根据DH⊥AH,可得OD⊥DH,即可证明;(2)过点O作OE⊥AH于E,由(1)知,四边形ODHE是矩形,可得OE=DH=,在Rt△AOE中,根据sin∠BAC=,sin∠BAC=,可得AO==×=6,即可求出直径.【详解】(1)连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分,∴∠CAD=∠OAD,∴∠CAD=∠ODA,∴OD∥AH,∵DH⊥AH,∴OD⊥DH,∴DH是半圆的切线;(2)过点O作OE⊥AH于E,由(1)知,四边形ODHE是矩形,∴OE=DH=,在Rt△AOE中,∵sin∠BAC=,sin∠BAC=,∴AO==×=6,∴AB=2OA=12,∴半圆的直径长为12.【点睛】本题考查了切线的判定,平行线的性质和判定,矩形的性质和判定,解直角三角形,灵活运用所学知识点是解题关键.5.(2022·四川宜宾·中考真题)如图,点C是以AB为直径的上一点,点D是AB的延长线上一点,在OA上取一点F,过点F作AB的垂线交AC于点G,交DC的延长线于点E,且.(1)求证:DE是的切线;(2)若点F是OA的中点,,,求EC的长.【答案】(1)见解析(2)【分析】(1)连结OC,利用等腰三角形的性质和圆周角定理证,即可由切线的判定定理得出结论;(2)解,求出,从而求得,则可求得,再证,得,即可求得,即可由求解.(1)证明:如图,连结OC,∵,∴,又∵,∴,又∵,∴,又∵,∴,∴,即,∴,∴DE是的切线;(2)解:在中,,,∴,∴,∴,∴,又∵点F为AO中点,

∴,∴,∵,∴,∴,即,∴,∴.【点睛】本题考查切线的判定,圆周角定理,等腰三角形的性质,解直角三角形,相似三角形的判定与性质,熟练掌握相关性质与判定是解题的关键.6.(2021·四川德阳·中考真题)如图,已知:AB为⊙O的直径,⊙O交△ABC于点D、E,点F为AC的延长线上一点,且∠CBF∠BOE.(1)求证:BF是⊙O的切线;(2)若AB=4,∠CBF=45°,BE=2EC,求AD和CF的长.【答案】(1)见解析;(2),【分析】(1)连结,,根据“圆周角定理”及“直径所对的圆周角等于”得到,即,即可判定是的切线;(2)过点作于点,连结,解直角三角形得出,,,由判定,得出,即可求出,,再根据勾股定理求出,,最后根据特殊角的三角函数即可得解.【详解】解:(1)证明:连结,,,,,为的直径,,,,即,,是的切线;(2)解:过点作于点,连结,,,在中,,,,,,在中,,,,,,,,,,,,在中,,在中,,为的直径,,又,,即,,.【点睛】此题考查了切线的判定与性质、圆周角定理,熟记切线的判定与性质、圆周角定理及作出合理的辅助线是解题的关键.7.(2021·四川南充·中考真题)如图,A,B是上两点,且,连接OB并延长到点C,使,连接AC.(1)求证:AC是的切线.(2)点D,E分别是AC,OA的中点,DE所在直线交于点F,G,,求GF的长.【答案】(1)见解析;(2)2【分析】(1)先证得△AOB为等边三角形,从而得出∠OAB=60°,利用三角形外角的性质得出∠C=∠CAB=30°,由此可得∠OAC=90°即可得出结论;(2)过O作OM⊥DF于M,DN⊥OC于N,利用勾股定理得出AC=,根据含30°的直角三角形的性质得出DN=,再根据垂径定理和勾股定理即可求出GF的长.【详解】(1)证明:∵AB=OA,OA=OB∴AB=OA=OB∴△AOB为等边三角形∴∠OAB=60°,∠OBA=60°∵BC=OB∴BC=AB∴∠C=∠CAB又∵∠OBA=60°=∠C+∠CAB∴∠C=∠CAB=30°∴∠OAC=∠OAB+∠CAB=90°∴AC是⊙O的切线;(2)∵OA=4∴OB=AB=BC=4∴OC=8∴AC===∵D、E分别为AC、OA的中点,∴OE//BC,DC=过O作OM⊥DF于M,DN⊥OC于N则四边形OMDN为矩形∴DN=OM在Rt△CDN中,∠C=30°,∴DN=DC=∴OM=连接OG,∵OM⊥GF∴GF=2MG=2==2【点睛】本题考查了切线的判定、垂径定理、等边三角形的性质和判定,熟练掌握相关的知识是解题的关键.8.(2021·四川广元·中考真题)如图,在Rt中,,是的平分线,以为直径的交边于点E,连接,过点D作,交于点F.(1)求证:是的切线;(2)若,,求线段的长.【答案】(1)证明见详解;(2).【分析】(1)先根据圆周角定理、角平分线定义、平行线性质证明∠EAD=∠FDE,再根据AD为直径,得到∠ADE+∠DAE=90°,进而得到AD⊥FD,问题得证;(2)先求出DE=3,证明△AED≌△ACD,得到DE=DC=3,BC=BD+CD=8,解Rt中求出AC=6,进而得到AE=6,求出,证明△ADE∽△AFD,得到,即可求出.【详解】解:(1)证明:连接DE,∵∴∠CAD=∠CED,∵是的平分线,∴∠CAD=∠EAD,∴∠CED=∠EAD,∵,∴∠CED=∠FDE,∴∠EAD=∠FDE,∵AD为直径,∴∠AED=∠ACD=90°,∴∠ADE+∠DAE=90°,∴∠ADE+∠FDE=90°,即AD⊥FD,又∵为直径,∴是的切线;(2)∵∠AED=90°,∴∠BED=90°,∴,∵∠AED=∠ACD,∠DAE=∠DAC,AD=AD,∴△AED≌△ACD,∴DE=DC=3,∴BC=BD+CD=8,在Rt中,∵,∴设AC=3x,AB=5x,∴,∵x>0,∴x=2,∴AB=5x=10,AC=3x=6,∵△AED≌△ACD,∴AE=AC=6,∴在Rt△ADE中,,∵∠EAD=∠DAF,∠AED=∠ADF=90°,∴△ADE∽△AFD,∴,即,∴.【点睛】本题为圆的综合题,考查了切线的判定,圆的性质,三角函数,相似三角形的判定与性质等知识,根据题意添加辅助线,熟知圆的性质,利用三角函数解直角三角形是解题关键.9.(2021·四川广安·中考真题)如图,是的直径,点在上,的平分线交于点,过点作,交的延长线于点,延长、相交于点.(1)求证:是的切线;(2)若的半径为5,,求的长.【答案】(1)见解析;(2)【分析】(1)连接OE,由题意可证OE∥AD,且DE⊥AF,即OE⊥DE,则可证CD是⊙O的切线;(2)连接BE,证明△ADE∽△AEB,得到,根据tan∠EAD=,在△ABE中,利用勾股定理求出BE和AE,可得AD和DE,再证明△COE∽△CAD,得到,设BC=x,解方程即可求出BC.【详解】解:(1)连接OE,∵OA=OE,∴∠OAE=∠OEA,∵AE平分∠BAF,∴∠OAE=∠DAE,∴∠OEA=∠EAD,∴OE∥AD,∵ED⊥AF,∴OE⊥DE,∴CD是⊙O的切线;(2)连接BE,∵AB为直径,∴∠AEB=90°=∠D,又∠DAE=∠BAE,∴△ADE∽△AEB,∴,又tan∠EAD=,∴,则AE=2BE,又AB=10,在△ABE中,AE2+BE2=AB2,即(2BE)2+BE2=102,解得:BE=,则AE=,∴,解得:AD=8,DE=4,∵OE∥AD,∴△COE∽△CAD,∴,设BC=x,∴,解得:x=,经检验:x=是原方程的解,故BC的长为.【点睛】本题主要考查了切线的判定,相似三角形的判定和性质,勾股定理,三角函数的定义,作出辅助线,熟练运用这些性质进行推理是本题的关键.10.(2021·四川资阳·中考真题)如图,在中,,以为直径的交于点D,交的延长线于点E,交于点F.(1)求证:是的切线;(2)若,求的长.【答案】(1)证明见解析;(2)【分析】(1)要证明DE是的切线,只要证明即可.连接OD,根据条件证明,则可推导出.(2)根据条件,在中,求出OE的长,然后证明,从而根据相似比求解即可.【详解】(1)证明:如下图,连接OD,∵,,∴,,∴,∴,∴,又∵,∴,∴,∴DE是的切线.(2)解:∵AC=6,∴,在中,,∴,,∴,又∵,∴,∴,即,∴.【点睛】本题考查的是切线的判定,等腰三角形的性质、三角形的相似,勾股定理等相关知识点,根据题意数形结合是解题的关键.11.(2020·四川广安·中考真题)如图,AB是⊙O的直径,点E在AB的延长线上,AC平分∠DAE交⊙O于点C,AD⊥DE于点D.(l)求证:直线DE是⊙O的切线.(2)如果BE=2,CE=4,求线段AD的长.【答案】(1)证明见解析;(2)【分析】(1)连接OC,根据等边对等角和垂直定义可得∠OAC=∠OCA,∠D=90°,根据角平分线的定义可得∠DAC=∠OAC,从而得出∠OCA=∠DAC,根据平行线的判定可得OC∥AD,从而得出∠OCE=∠D=90°,然后根据切线的判定定理即可证出结论;(2)连接BC,根据相似三角形的判定定理可证△BCE∽△CAE,列出比例式即可求出AE,从而求出OC、OB和OE,然后根据平行线证出△EOC∽△EAD,列出比例式即可求出AD.【详解】解:(1)连接OC∵OA=OC,AD⊥DE∴∠OAC=∠OCA,∠D=90°∵AC平分∠DAE∴∠DAC=∠OAC∴∠OCA=∠DAC∴OC∥AD∴∠OCE=∠D=90°∴OC⊥DE∴直线DE是⊙O的切线;(2)连接BC∵AB为直径∴∠ACB=90°∴∠ACO+∠OCB=90°∵OC⊥DE∴∠BCE+∠OCB=90°∴∠BCE=∠ACO∵∠OAC=∠OCA∴∠BCE=∠CAE∵∠E=∠E∴△BCE∽△CAE∴即解得:AE=8∴AB=AE-BE=6∴OC=OB==3∴OE=OB+BE=5∵OC∥AD∴△EOC∽△EAD∴即解得:AD=.【点睛】此题考查的是等腰三角形的性质、平行线的判定及性质、切线的判定及性质、圆周角定理的推论和相似三角形的判定及性质,掌握等边对等角、平行线的判定及性质、切线的判定及性质、圆周角定理的推论和相似三角形的判定及性质是解题关键.12.(2022·四川南充·中考真题)如图,为的直径,点C是上一点,点D是外一点,,连接交于点E.(1)求证:是的切线.(2)若,求的值.【答案】(1)见解析;(2)3【分析】(1)连接OC,根据圆周角定理得到∠ACB=90°,根据OA=OC推出∠BCD=∠ACO,即可得到∠BCD+∠OCB=90°,由此得到结论;(2)过点O作OF⊥BC于F,设BC=4x,则AB=5x,OA=CE=2.5x,BE=1.5x,勾股定理求出AC,根据OF∥AC,得到,证得OF为△ABC的中位线,求出OF及EF,即可求出的值.(1)证明:连接OC,∵为的直径,∴∠ACB=90°,∴∠ACO+∠OCB=90°,∵OA=OC,∴∠A=∠ACO,∵,∴∠BCD=∠ACO,∴∠BCD+∠OCB=90°,∴OC⊥CD,∴是的切线.(2)解:过点O作OF⊥BC于F,∵,∴设BC=4x,则AB=5x,OA=CE=2.5x,∴BE=BC-CE=1.5x,∵∠C=90°,∴AC=,∵OA=OB,OF∥AC,∴,∴CF=BF=2x,EF=CE-CF=0.5x,∴OF为△ABC的中位线,∴OF=,∴=.【点睛】此题考查了圆周角定理,证明直线是圆的切线,锐角三角函数,三角形中位线的判定与性质,平行线分线段成比例,正确引出辅助线是解题的关键.13.(2021·四川雅安·中考真题)如图,在⊙中,是直径,,垂足为P,过点的的切线与的延长线交于点,连接.(1)求证:为⊙的切线;(2)若⊙半径为3,,求.【答案】(1)证明见解析;(2)【分析】(1)连接、,由题意可以得到,再利用,即可得出即可;(2)过点作于点,在中,,由(1)得,在和中,设,根据勾股定理建立方程求出,再求出即可.【详解】解:(1)证:连接、∵为的切线∴∵是直径,∴,又∵∴∴,又∵∴∴∴为⊙的切线;(2)过点作于点,如下图:由(1)得在中,,,∴∴(等面积法)∴设,则在和中,,∴解得∴【点睛】此题考查了圆的切线证明、勾股定理的应用、三角函数的概念,解题的关键是熟练掌握圆的有关性质、勾股定理的应用和三角函数的有关概念.14.(2022·四川乐山·中考真题)如图,线段AC为⊙O的直径,点D、E在⊙O上,=,过点D作DF⊥AC,垂足为点F.连结CE交DF于点G.(1)求证:CG=DG;(2)已知⊙O的半径为6,,延长AC至点B,使.求证:BD是⊙O的切线.【答案】(1)见解析(2)见解析【分析】(1)连接AD,得到∠ADF+∠FDC=90°,由DF⊥AC,得到∠ADF+∠DAF=90°,再由=,可推出∠DCE=∠FDC,即可证明CG=DG;(2)要证明BD是⊙O的切线,只要证明OD⊥BD,只要证明BD∥CE,通过计算求得sin∠B=,即可证明结论.(1)证明:连接AD,∵AC为⊙O的直径,∴∠ADC=90°,则∠ADF+∠FDC=90°,∵DF⊥AC,∴∠AFD=90°,则∠ADF+∠DAF=90°,∴∠FDC=∠DAF,∵=,∴∠DCE=∠DAC,∴∠DCE=∠FDC,∴CG=DG;(2)证明:连接OD,设OD与CE相交于点H,∵=,∴OD⊥EC,∵DF⊥AC,∴∠ODF=∠OCH=∠ACE,∵,∴sin∠ODF=sin∠OCH=,即=,∴OF=,由勾股定理得DF=,FC=OC-OF=,∴FB=FC+BC=,由勾股定理得DB==8,∴sin∠B==,∴∠B=∠ACE,∴BD∥CE,∵OD⊥EC,∴OD⊥BD,∵OD是半径,∴BD是⊙O的切线.【点睛】本题考查了切线的判定、解直角三角形、圆周角定理等知识点,熟练掌握圆的切线的判定及圆中的相关计算是解题的关键.15.(2021·四川巴中·中考真题)如图,ABC内接于⊙O,且AB=AC,其外角平分线AD与CO的延长线交于点D.(1)求证:直线AD是⊙O的切线;(2)若AD=2,BC=6,求图中阴影部分面积.【答案】(1)见解析;(2)【分析】(1)连接OA,证明OA⊥AD即可,利用角平分线的意义以及等腰三角形的性质得以证明;(2)求出圆的半径和阴影部分所对应的圆心角度数即可,利用相似三角形求出半径,再根据特殊锐角三角函数求出∠BOC.【详解】解:(1)如图,连接OA并延长交BC于E,∵AB=AC,△ABC内接于⊙O,∴AE所在的直线是△ABC的对称轴,也是⊙O的对称轴,∴∠BAE=∠CAE,又∵∠MAD=∠BAD,∠MAD+∠BAD+∠BAE+∠CAE=180°,∴∠BAD+∠BAE=×180°=90°,即AD⊥OA,∴AD是⊙O的切线;(2)连接OB,∵∠OAD=∠OEC=90°,∠AOD=∠EOC,∴△AOD∽△EOC,∴,由(1)可知是的对称轴,垂直平分,,设半径为,在中,由勾股定理得,,,解得(取正值),经检验是原方程的解,即,又,是等边三角形,,,.【点睛】本题考查了切线的判定和性质、角平分线的性质,圆周角定理,三角形外接圆与外心,扇形面积的计算,灵活运用切线的判定方法是解题的关键.16.(2021·四川达州·中考真题)如图,是的直径,为上一点(不与点,重合)连接,,过点作,垂足为点.将沿翻折,点落在点处得,交于点.(1)求证:是的切线;(2)若,,求阴影部分面积.【答案】(1)见解析;(2)【分析】(1)连接OC,先证明∠CDA=90°,根据折叠的性质和圆的半径相等证明OCAE,从而求出∠ECO=90°,问题得证;(2)连接,过点作于点,证明四边形OCEG为矩形,求出,,,进而求出,∠COF=30°,分别求出矩形OCEG、△OGF、扇形COF面积,即可求出阴影部分面积.【详解】解:(1)如图,连接OC,∵,∴∠CDA=90°,∵翻折得到,∴∠EAC=∠DAC,∠E=∠CDA=90°,∴∠EAD=2∠DAC,∵OA=OC,∴∠OAC=∠OCA∴∠COD=2∠OAC,∴∠COD=∠EAD,∴OCAE,∴∠ECO=180°-∠E=90°,∴OC⊥EC,∴是的切线;(2)如图,连接,过点作于点,∵∠E=∠ECO=90°,∴四边形OCEG为矩形.∵,,∴,∴,∴,∵于点,OA=OF=2,∴,∠FAO=∠AFO=30°,∵OCAE,∴∠COF=∠AFO=30°,∴矩形OCEG面积为,△OGF面积为,扇形COF面积为∴阴影部分面积=矩形OCEG面积-△OGF面积-扇形COF面积=.【点睛】本题为圆的综合题,考查了切线的判定,垂径定理,扇形的面积等知识,综合性较强,熟练掌握相关定理并根据题意添加辅助线是解题的关键.17.(2021·四川凉山·中考真题)如图,在中,,AE平分交BC于点E,点D在AB上,.是的外接圆,交AC于点F.(1)求证:BC是的切线;(2)若的半径为5,,求.【答案】(1)见解析;(2)20【分析】(1)连接OE,由OA=OE,利用等边对等角得到一对角相等,再由AE为角平分线得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行,得到AC与OE平行,再根据两直线平行同位角相等及∠C为直角,得到OE与BC垂直,可得出BC为圆O的切线;(2)过E作EG垂直于OD,利用AAS得出△ACE≌△AGE,得到AC=AG=8,从而可得OG,利用勾股定理求出EG,再利用三角形面积公式可得结果.【详解】解:(1)证明:连接OE,∵OA=OE,∴∠1=∠3,∵AE平分∠BAC,∴∠1=∠2,∴∠2=∠3,∴OE∥AC,∴∠OEB=∠C=90°,则BC为圆O的切线;(2)过E作EG⊥AB于点G,在△ACE和△AGE中,,∴△ACE≌△AGE(AAS),∴AC=AG=8,∵圆O的半径为5,∴AD=OA+OD=10,∴OG=3,∴EG==4,∴△ADE的面积==20.【点睛】此题考查了切线的判定,涉及的知识有:全等三角形的判定与性质,勾股定理,平行线的判定与性质,切线的判定方法有两种:有点连接证垂直;无点作垂线,证明垂线段等于半径.18.(2022·四川雅安·中考真题)如图,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分线,以O为圆心,OC为半径作⊙O与直线AO交于点E和点D.(1)求证:AB是⊙O的切线;(2)连接CE,求证:△ACE∽△ADC;(3)若=,⊙O的半径为6,求tan∠OAC.【答案】(1)证明见解析(2)证明见解析(3)tan∠OAC【分析】(1)如图,过作于证明即可得到结论;(2)证明再结合从而可得结论;(3)由相似三角形的性质可得设则而从而建立方程求解x,从而可得答案.(1)证明:如图,过作于∠ACB=90°,AO是△ABC的角平分线,O为圆心,OC为半径,是⊙O的切线.(2)如图,连结CE,为的直径,(3)设则而解得tan∠OAC【点睛】本题考查的是切线的判定,相似三角形的判定与性质,求解锐角的正切,证明,利用相似三角形的性质求解是解本题的关键.19.(2022·四川遂宁·中考真题)如图,是的外接圆,点O在BC上,的角平分线交于点D,连接BD,CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是的切线;(2)求证:∽;(3)若,,求点O到AD的距离.【答案】(1)见解析(2)见解析(3)点O到AD的距离为【分析】(1)连接OD,证明,则,即可得证;(2)由,,可得,根据四边形ABDC为圆内接四边形,又,可得,即可证明∽;(3)过点O作于点E,由∽,根据相似三角形的性质可求得,证明∽,继而求得,在中,利用勾股定理即可求解.(1)证明:连接OD,∵AD平分,∴,∴.又∵BC为直径,∴O为BC中点,∴.∵,∴.又∵OD为半径,∴PD是的切线;(2)证明:∵,∴.∵,∴.∵四边形ABDC为圆内接四边形,∴.又∵,∴,∴∽.(3)过点O作于点E,∵BC为直径,∴.∵,,∴.又∵,∴,∴.由(2)知∽,∴,∴,∴.又∵,,∴∽,∴,∴,∴.∵,∴.在中,,∴点O到AD的距离为.【点睛】本题考查了切线的性质与判定,圆内接四边形对角互补,相似三角形的性质与判定,勾股定理,掌握以上知识是解题的关键.20.(2021·四川内江·中考真题)如图,是的直径,、是上两点,且,过点的直线交的延长线于点,交的延长线于点,连接、交于点.(1)求证:是的切线;(2)若,的半径为2,求阴影部分的面积;(3)连结,在(2)的条件下,求的长.【答案】(1)见解析;(2);(3)【分析】(1)根据同圆中等弧所对的圆周角相等得到∠CAD=∠DAB,根据等边对等角得到∠DAB=∠ODA,则∠CAD=∠ODA,即可判定OD∥AE,进而得到OD⊥DE,据此即可得解;(2)连接BD,根据相似三角形的性质求出AE=3,AD=2,解直角三角形得到∠DAB=30°,则∠EAF=60°,∠DOB=60°,DF=2,再根据S阴影=S△DOF-S扇形DOB即可得解;(3)过点E作EM⊥AB于点M,连接BE,解直角三角形得到AM=,EM=,则MB=,再根据勾股定理求解即可.【详解】解:(1)证明:如图,连接,,,,,,,,,是的半径,是的切线;(2)解:,,,,的半径为2,,,如图,连接,是的直径,,,,,,即,,在中,,,,,,,,;(3)如图,过点作于点,连接,在中,,,,.【点睛】此题是圆的综合题,考查了切线的判定与性质、扇形的面积、相似三角形的判定与性质、解直角三角形,熟练掌握切线的判定与性质、相似三角形的判定与性质并证明△OGD∽△EGA求出AE是解题的关键.21.(2022·四川德阳·中考真题)如图,是的直径,是的弦,,垂足是点,过点作直线分别与,的延长线交于点,,且.(1)求证:是的切线;(2)如果,,①求的长;②求的面积.【答案】(1)证明过程见详解(2)①;②【分析】(1)连接OC、BC,根据垂径定理得到AB平分弦CD,AB平分,即有∠BAD=∠BAC=∠DCB,再根据∠ECD=2∠BAD,证得∠BCE=∠BCD,即有∠BCE=∠BAC,则有∠ECB=∠OCA,即可得∠ECB+∠OCB=90°,即有CO⊥FC,则问题得证;(2)①利用勾股定理求出OH、BC、AC,在Rt△ECH中,,在Rt△ECO中,,即可得到,则问题得解;②过F点作FP⊥AB,交AE的延长线于点P,先证△PAF∽△HAC,再证明△PEF∽△HEC,即可求出PF,则△PEF的面积可求.(1)连接OC、BC,如图,∵AB是⊙O的直径,∴∠ACB=90°,AO=OB,∵AB⊥CD,∴AB平分弦CD,AB平分,∴CH=HD,,∠CHA=90°=∠CHE,∴∠BAD=∠BAC=∠DCB,∵∠ECD=2∠BAD,∴∠ECD=2∠BAD=2∠BCD,∵∠ECD=∠ECB+∠BCD,∴∠BCE=∠BCD,∴∠BCE=∠BAC,∵OC=OA,∴∠BAC=∠OCA,∴∠ECB=∠OCA,∵∠ACB=90°=∠OCA+∠OCB,∴∠ECB+∠OCB=90°,∴CO⊥FC,∴CF是⊙O的切线;(2)①∵AB=10,CD=6,∴在(1)的结论中有AO=OB=5,CH=HD=3,∴在Rt△OCH中,,同理利用勾股定理,可求得,,∴BH=OB-OH=5-4=1,HA=OA+OH=4+5=9,即HE=BH+BE,在Rt△ECH中,,∵CF是⊙O的切线,∴∠OCB=90°,∴在Rt△ECO中,,∴,解得:,∴,②过F点作FP⊥AB,交AE的延长线于点P,如图,∵∠BAD=∠CAB,∠CHA=90°=∠P,∴△PAF∽△HAC,∴,即,∴,∵∠PEF=∠CEH,∠CHB=90°=∠P,∴△PEF∽△HEC,∴,即,∵HB=1,,,,∴,解得:,∴,故△AEF的面积为.【点睛】本题主要考查了垂径定理、切线的判定与性质、相似三角形的判定与性质、勾股定理等知识,掌握垂径定理是解答本题的关键.利用相似三角形的性质是解题的难点.22.(2021·四川遂宁·中考真题)如图,⊙O的半径为1,点A是⊙O的直径BD延长线上的一点,C为⊙O上的一点,AD=CD,∠A=30°.(1)求证:直线AC是⊙O的切线;(2)求△ABC的面积;(3)点E在上运动(不与B、D重合),过点C作CE的垂线,与EB的延长线交于点F.①当点E运动到与点C关于直径BD对称时,求CF的长;②当点E运动到什么位置时,CF取到最大值,并求出此时CF的长.【答案】(1)见解析;(2);(3)①3;②【分析】(1)连接OC,利用切线的判定定理,证明OC⊥AC即可;(2)要求的面积,结合(1)题,底边AB可求,只需再求出底边上的高CH即可;(3)根据垂径定理可求CE的长,再利用锐角三角函数,可求CF的长;由可知,点E在运动过程中,始终有,所以,求出CE的最大值,即可得到CF的最大值.【详解】(1)证明:连结OC,如图所示.∵AD=CD,∠A=30°,∴∠ACD=∠A=30°.∴∠CDB=60°.∵OD=OC,∴∠OCD=∠ODC=60°.∴∠ACO=∠ACD+∠OCD=30°+60°=90°.∴OC⊥AC.∴直线AC是⊙O的切线.(2)过点C作CH⊥AB于点H,如图所示.∵OD=OC,∠ODC=60°,∴是等边三角形.∴.∴在中,.∵AB=AD+BD=3,∴.(3)当点运动到与点关于直径BD对称时,如图所示.此时,CE⊥AB,设垂足为K.由(2)可知,.∵BD为圆的直径,CE⊥AB,∴CE=2CK=.∵CF⊥CE,∴∠ECF=90°.∵,∴∠E=∠CDB=60°.在中,∵,∴.如图所示:由可知,在中,∵,∴.∴当点E在上运动时,始终有.∴当CE最大时,CF取得最大值.∴当CE为直径,即CE=2时,CF最大,最大值为.【点睛】本题考查了圆的切线的判定、等腰三角形的性质、勾股定理、垂径定理、圆周角定理的推论、锐角三角函数、求线段的最值等知识点,熟知切线的判定方法、垂径定理、圆周角定理、锐角三角函数的定义是解题的关键.23.(2021·四川成都·中考真题)如图,为的直径,C为上一点,连接,D为延长线上一点,连接,且.(1)求证:是的切线;(2)若的半径为,的面积为,求的长;(3)在(2)的条件下,E为上一点,连接交线段于点F,若,求的长.【答案】(1)见解析;(2);(3)【分析】(1)连接.可证得,从而得是的切线;(2)过点C作于点M,可得,再证明△COM∽△DOC,进而得到;(3)过点E作于点N,连接,证明△FCM∽△FEN,利用相似可得,再证明Rt△COM≌Rt△OEN,通过全等可得ON=CM=2,进而根据已知条件得到.【详解】(1)证明:连接,∵AB为⊙O直径,∴∠ACB=90°,∴∠CAB+∠CBO=90°,又∵OB=OC,∴∠CBO=∠BCO,∴∠CAB+∠BCO=90°∵∠BCD=∠A,∴∠BCD+∠BCO=90°,∴OC⊥CD∴CD为⊙O切线;(2)过点C作于点M,∵的半径为,∴AB=,∵的面积为,∴CM=2,在Rt△CMO中,CO=,CM=2,∴OM=1,由(1)得∠OCD=∠CMO=90°,∵∠COM=∠COD,∴△COM∽△DOC,∴,∴,∴,(3)过点E作于点N,连接,∵,,∴△FCM∽△FEN,∴,由(2)得CM=2,OM=1,∴EN=OM=1,∵OC=OE,∴Rt△COM≌Rt△OEN,∴ON=CM=2,∴MN=3,∵,∴FM=2,∵OM=1,∴OF=1,∵BF=OB+OF,∴.【点睛】本题是圆的综合题,考查了圆周角定理,切线的判定,相似三角形的判定和性质,解答本题需要我们熟练掌握各部分的内容,要注意将所学知识贯穿起来.24.(2020·四川·中考真题)如图,在⊙O中,弦AB与直径CD垂直,垂足为M,CD的延长线上有一点P,满足∠PBD=∠DAB.过点P作PN⊥CD,交OA的延长线于点N,连接DN交AP于点H.(1)求证:BP是⊙O的切线;(2)如果OA=5,AM=4,求PN的值;(3)如果PD=PH,求证:AH•OP=HP•AP.【答案】(1)见解析;(2);(3)见解析【分析】(1)连接BC,OB,证明OB⊥PB即可.(2)解直角三角形求出OM,利用相似三角形的性质求出OP,再利用平行线分线段成比例定理求出PN即可.(3)证明△NAH∽△NPD,推出=,证明△PAN∽△OAP,推出=,推出=可得结论.【详解】(1)如图,连接BC,OB.∵CD是直径,∴∠CBD=90°,∵OC=OB,∴∠C=∠CBO,∵∠C=∠BAD,∠PBD=∠DAB,∴∠CBO=∠PBD,∴∠OBP=∠CBD=90°,∴PB⊥OB,∴PB是⊙O的切线;(2)∵CD⊥AB,∴CD垂直平分AB,∴PA=PB,∵OA=OB,OP=OP,∴△PAO≌△PBO(SSS),∴∠OAP=∠OBP=90°,∵∠AMO=90°,∴OM===3,∵∠AOM=∠AOP,∠OAP=∠AMO,∴△AOM∽△POA,∴=,∴=,∴OP=,∵PN⊥PC,∴∠NPC=∠AMO=90°,∴=,∴=,∴PN=.(3)∵PD=PH,∴∠PDH=∠PHD,∴∠PDN=∠PHD=∠AHN,∵∠NPC=90°,∠OAP=90°,∴∠NAH=∠NPD=90°,∴△NAH∽△NPD,∴=,∵∠APN+∠PNA=∠POA+∠PNA=90°,∴∠APN=∠POA,又∠PAN=∠PAO=90°,∴△PAN∽△OAP,∴=,∴=,∴==,∴AH•OP=HP•AP.【点睛】本题综合考查了切线的判定和性质,垂径定理,圆周角定理,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.25.(2020·四川绵阳·中考真题)如图,△ABC内接于⊙O,点D在⊙O外,∠ADC=90°,BD交⊙O于点E,交AC于点F,∠EAC=∠DCE,∠CEB=∠DCA,CD=6,AD=8.(1)求证:AB∥CD;(2)求证:CD是⊙O的切线;(3)求tan∠ACB的值.【答案】(1)见解析

(2)见解析

(3)【分析】(1)由圆周角定理与已知得,即可得出结论;(2)连接并延长交于,连接,则为的直径,,证明,得出,即可得出结论;(3)由三角函数定义求出,证出,求出,,过点作于,设,则,由勾股定理得出方程,解方程得,由勾股定理求出,由三角函数定义即可得答案.【详解】(1)证明:,,,;(2)证明:连接并延长交于,连接,如图1所示:则为的直径,,,,,,,,,即,是的半径,是的切线;(3)解:在中,由勾股定理得:,,是的切线,,,,,过点作于,如图2所示:设,则,由勾股定理得:,即:,解得:,,,.【点睛】本题是圆的综合题目,考查了切线的判定与性质、圆周角定理、平行线的判定与性质、等腰三角形的判定与性质、三角函数定义、勾股定理等知识;熟练掌握圆周角定理和切线的判定是解题的关键.26.(2020·四川内江·中考真题)如图,AB是⊙O的直径,C是⊙O上一点,于点D,过点C作⊙O的切线,交OD的延长线于点E,连结BE.(1)求证:BE是⊙O的切线;(2)设OE交⊙O于点F,若,求线段EF的长;(3)在(2)的条件下,求阴影部分的面积.【答案】(1)见解析;(2)EF=4;(3)【分析】(1)连接OC,如图,根据垂径定理由OD⊥BC得到CD=BD,则OE为BC的垂直平分线,所以EB=EC,根据等腰三角形的性质得∠EBC=∠ECB,加上∠OBC=∠OCB,则∠OBE=∠OCE;再根据切线的性质得∠OCE=90°,所以∠OBE=90°,然后根据切线的判定定理得BE与⊙O相切;(2)设⊙O的半径为R,则OD=R-DF=R-2,OB=R,在Rt△OBD,利用勾股定理解得R=4,再利用含30º角的直角三角形边角关系可求得OE,利用EF=OE-OF即可解答;(3)利用(2)中可求得∠BOC=120º,然后利用代入数值即可求解.【详解】(1)证明:连接OC,如图,∵OD⊥BC,∴CD=BD,∴OE为BC的垂直平分线,∴EB=EC,∴∠EBC=∠ECB,∵OB=OC,∴∠OBC=∠OCB,∴∠OBC+∠EBC=∠OCB+∠ECB,即∠OBE=∠OCE,∵CE为⊙O的切线,∴OC⊥CE,∴∠OCE=90°,∴∠OBE=90°,∴OB⊥BE,∴BE与⊙O相切.(2)设⊙O的半径为R,则OD=R-DF=R-2,OB=R,在Rt△OBD中,BD=BC=∵OD2+BD2=OB2,∴,解得R=4,∴OD=2,OB=4,∴∠OBD=30°,∴∠BOD=60°,∴在Rt△OBE中,∠BEO=30º,OE=2OB=8,∴EF=OE-OF=8-4=4,即EF=4;(3)由∠OCD=∠OBD=30º和OD⊥BC知:∠COD=∠BOD=60º,∴∠BOC=120º,又BC=,OE=8,∴=,

【点睛】本题考查了切线的判定与性质、垂径定理、扇形面积的计算、含30º角的直角三角形边角关系、勾股定理等知识,熟练掌握每个知识点是解答的关键.27.(2020·四川广元·中考真题)在中,,OA平分交BC于点O,以O为圆心,OC长为半径作圆交BC于点D.(1)如图1,求证:AB为的切线;(2)如图2,AB与相切于点E,连接CE交OA于点F.①试判断线段OA与CE的关系,并说明理由.②若,求的值.【答案】(1)见解析;(2)①OA垂直平分CE,理由见解析;②【分析】(1)过点O作OG⊥AB,垂足为G,利用角平分线的性质定理可得OG=OC,即可证明;(2)①利用切线长定理,证明OE=OC,结合OE=OC,再利用垂直平分线的判定定理可得结论;②根据求出OF和CF,再证明△OCF∽△OAC,求出AC,再证明△BEO∽△BCA,得到,设BO=x,BE=y,可得关于x和y的二元一次方程组,求解可得BO和BE,从而可得结果.【详解】解:(1)如图,过点O作OG⊥AB,垂足为G,∵OA平分交BC于点O,∴OG=OC,∴点G在上,即AB与相切;(2)①OA垂直平分CE,理由是:连接OE,∵AB与相切于点E,AC与相切于点C,∴AE=AC,∵OE=OC,∴OA垂直平分CE;②∵,则FC=2OF,在△OCF中,,解得:OF=,则CF=,由①得:OA⊥CE,则∠OCF+∠COF=90°,又∠OCF+∠ACF=90°,∴∠COF=∠ACF,而∠CFO=∠ACO=90°,∴△OCF∽△OAC,∴,即,解得:AC=6,∵AB与圆O切于点E,∴∠BEO=90°,AC=AE=6,而∠B=∠B,∴△BEO∽△BCA,∴,设BO=x,BE=y,则,可得:,解得:,即BO=5,BE=4,∴tanB==.【点睛】本题考查了圆的综合,切线的判定和性质,相似三角形的判定和性质,二元一次方程组的应用,有一定难度,解题要合理选择相似三角形得出结论.28.(2020·四川成都·中考真题)如图,在的边上取一点,以为圆心,为半径画⊙O,⊙O与边相切于点,,连接交⊙O于点,连接,并延长交线段于点.(1)求证:是⊙O的切线;(2)若,,求⊙O的半径;(3)若是的中点,试探究与的数量关系并说明理由.【答案】(1)见解析;(2);(3),理由见解析【分析】(1)连接OD,由切线的性质可得∠ADO=90°,由“SSS”可证△ACO≌△ADO,可得∠ADO=∠ACO=90°,可得结论;(2)由锐角三角函数可设AC=4x,BC=3x,由勾股定理可求BC=6,再由勾股定理可求解;(3)连接OD,DE,由“SAS”可知△COE≌△DOE,可得∠OCE=∠OED,由三角形内角和定理可得∠DEF=180°-∠OEC-∠OED=180°-2∠OCE,∠DFE=180°-∠BCF-∠CBF=180°-2∠OCE,可得∠DEF=∠DFE,可证DE=DF=CE,可得结论.【详解】解:(1)如图,连接OD,∵⊙O与边AB相切于点D,∴OD⊥AB,即∠ADO=90°,∵AO=AO,AC=AD,OC=OD,∴△ACO≌△ADO(SSS),∴∠ADO=∠ACO=90°,又∵OC是半径,∴AC是⊙O的切线;(2)在Rt△ABC中,tanB==,∴设AC=4x,BC=3x,∵AC2+BC2=AB2,∴16x2+9x2=100,∴x=2,∴BC=6,∵AC=AD=8,AB=10,∴BD=2,∵OB2=OD2+BD2,∴(6-OC)2=OC2+4,∴OC=,故⊙O的半径为;(3)连接OD,DE,由(1)可知:△ACO≌△ADO,∴∠ACO=∠ADO=90°,∠AOC=∠AOD,又∵CO=DO,OE=OE,∴△COE≌△DOE(SAS),∴∠OCE=∠ODE,∵OC=OE=OD,∴∠OCE=∠OEC=∠OED=∠ODE,∴∠DEF=180°-∠OEC-∠OED=180°-2∠OCE,∵点F是AB中点,∠ACB=90°,∴CF=BF=AF,∴∠FCB=∠FBC,∴∠DFE=180°-∠BCF-∠CBF=180°-2∠OCE,∴∠DEF=∠DFE,∴DE=DF=CE,∴AF=BF=DF+BD=CE+BD.【点睛】本题是圆的综合题,考查了圆的有关知识,切线的判定和性质,全等三角形的判定和性质,勾股定理,锐角三角函数等知识,灵活运用这些性质进行推理是本题的关键.29.(2020·四川遂宁·中考真题)如图,在Rt△ABC中,∠ACB=90°,D为AB边上的一点,以AD为直径的⊙O交BC于点E,交AC于点F,过点C作CG⊥AB交AB于点G,交AE于点H,过点E的弦EP交AB于点Q(EP不是直径),点Q为弦EP的中点,连结BP,BP恰好为⊙O的切线.(1)求证:BC是⊙O的切线.(2)求证:=.(3)若sin∠ABC═,AC=15,求四边形CHQE的面积.【答案】(1)见解析;(2)见解析;(3)45【分析】(1)连接OE,OP,根据线段垂直平分线的性质得到PB=BE,根据全等三角形的性质得到∠BEO=∠BPO,根据切线的判定和性质定理即可得到结论.(2)根据平行线和等腰三角形的性质即可得到结论.(3)根据垂径定理得到EP⊥AB,根据平行线和等腰三角形的性质得到∠CAE=∠EAO,根据全等三角形的性质得到CE=QE,推出四边形CHQE是菱形,解直角三角形得到CG==12,根据勾股定理即可得到结论.【详解】(1)证明:连接OE,OP,∵PE⊥AB,点Q为弦EP的中点,∴AB垂直平分EP,∴PB=BE,∵OE=OP,OB=OB,∴△BEO≌△BPO(SSS),∴∠BEO=∠BPO,∵BP为⊙O的切线,∴∠BPO=90°,∴∠BEO=90°,∴OE⊥BC,∴BC是⊙O的切线.(2)解:∵∠BEO=∠ACB=90°,∴AC∥OE,∴∠CAE=∠OEA,∵OA=OE,∴∠EAO=∠AEO,∴∠CAE=∠EAO,∴.(3)解:∵AD为的⊙O直径,点Q为弦EP的中点,∴EP⊥AB,∵CG⊥AB,∴CG∥EP,∵∠ACB=∠BEO=90°,∴AC∥OE,∴∠CAE=∠AEO,∵OA=OE,∴∠EAQ=∠AEO,∴∠CAE=∠EAO,∵∠ACE=∠AQE=90°,AE=AE,∴△ACE≌△AQE(AAS),∴CE=QE,∵∠AEC+∠CAE=∠EAQ+∠AHG=90°,∴∠CEH=∠AHG,∵∠AHG=∠CHE,∴∠CHE=∠CEH,∴CH=CE,∴CH=EQ,∴四边形CHQE是平行四边形,∵CH=CE,∴四边形CHQE是菱形,∵sin∠ABC═sin∠ACG═=,∵AC=15,∴AG=9,∴CG==12,∵△ACE≌△AQE,∴AQ=AC=15,∴QG=6,∵HQ2=HG2+QG2,∴HQ2=(12﹣HQ)2+62,解得:HQ=,∴CH=HQ=,∴四边形CHQE的面积=CH•GQ=×6=45.【点睛】此题考查了圆的综合问题,用到的知识点是全等三角形的判定与性质、菱形的判定和性质、勾股定理以及解直角三角形等知识,此题综合性很强,难度较大,注意数形结合思想应用.30.(2020·四川乐山·中考真题)如图1,是半圆的直径,是一条弦,是上一点,于点,交于点,连结交于点,且.(1)求证:点平分;(2)如图2所示,延长至点,使,连结.若点是线段的中点.求证:是⊙的切线.【答案】(1)证明见解析;(2)证明见解析.【分析】(1)连接,由是直径得,由同角的余角相等证明,由直角三角形斜边中线性质证明,进而得出,即得出结论;(2)由已知可知DE是OA、HB的垂直平分线,可得,,从而,,再由即可证明,由此即可得出可能.【详解】证明:(1)连接、,如图3所示,

图3∵是半圆的直径,∴,∵,∴,又∵,即点是的斜边的中点,∴,∴,∴,∴,即点平分;(2)如图4所示,连接、,图4∵点是线段的中点,,,∴,,∴,∴,又∵,∴,∴,∴是⊙的切线.【点睛】本题是圆的简单综合题目,考查了切线的性质、圆周角定理、等腰三角形的判定与性质、菱形的性质、直角三角形的性质知识;熟练掌握圆周角定理和等腰三角形的性质和判定是解题的关键.31.(2020·四川自贡·中考真题)如图,⊙是△的外接圆,为直径,点是⊙外一点,且,连接交于点,延长交⊙于点.⑴.证明:=;⑵.若,证明:是⊙的切线;⑶.在⑵的条件下,连接交⊙于点,连接;若,求的长.

【答案】(1)证明过程见解析;(2)证明过程见解析;(3)【分析】(1)连接CO,易证△PCO≌△PAO,得PO为∠APC的角平分线,根据条件证出F为优弧中点,即可证明=;(2)因为AB是直径,所以∠ACB=90°,由tan∠ABC=可求得∠ABC的正弦和余弦,设⊙O的半径为r,则AB=2r,根据三角函数表示出BC,AC的长度,由勾股定理表示出OD的长度,易得PA=PC=,,PO=PD+OD=3r,由可得PA⊥OA,即可证明是⊙的切线;(3)连接AE,过E作EN⊥PD于N,过B作BH⊥PF于H,由(2)可得,,PB=,证出△PEA∽△PAB,可得,证出四边形BCDH是矩形,得BH=CD=,在Rt△BPH和Rt△PEN中表示出sin∠BPH,可得,,ND=PD-PN=,在Rt△NED中,DE=,代入r=3即可【详解】解:(1)证明:如图,连接CO,在△PCO和△PAO中,∴△PCO≌△PAO(SSS),∴∠CPO=∠APO,即PO为∠APC的角平分线,∵PA=PC,∴CD=AD,PF⊥AC,∵AC为⊙O的弦,PF过圆心O,∴F为优弧中点,∴=,(2)证明:∵AB是⊙O的直径,且弦AB所对圆周角为∠ACB,∴∠ACB=90°,∵tan∠ABC=,∴sin∠ABC=,cos∠ABC=,设⊙O的半径为r,则AB=2r,∴BC=ABcos∠ABC=,AC=ABsin∠ABC=,∴,∵PA=PC=AB,∴PA=PC=,∴,∴PO=PD+OD=3r,∴,即PA⊥OA,又∵OA是⊙O半径,∴PA是⊙O的切线;(3)由(2)可得,∴,在Rt△PBA中,,连接AE,可得∠AEB=90°,∴∠PEA=∠PAB=90°,又∠APE=∠APB,∴△PEA∽△PAB,∴,∴,过E作EN⊥PD于N,过B作BH⊥PF于H,如图所示,∴∠BCD=∠CDF=∠BHD=90°,∴四边形BCDH是矩形,∴BH=CD=,在Rt△BPH中,sin∠BPH=,在Rt△PEN中,sin∠BPH=,∴,∴,∴ND=PD-PN=,在Rt△NED中,DE=,∵,∴DE=.【点睛】此题考查了圆的综合应用,用到的知识点是矩形的判定、相似三角形的判定与性质、勾股定理以及解直角三角形等知识,此题综合性很强,难度较大,注意数形结合思想应用.32.(2022·四川攀枝花·中考真题)如图,的直径垂直于弦于点F,点P在的延长线上,与相切于点C.(1)求证:;(2)若的直径为4,弦平分半径,求:图中阴影部分的面积.【答案】(1)见解析(2)【分析】(1)首先可证得,由圆周角定理得:,可得,再根据切线的性质,可得,根据垂直的定义可得,据此即可证得;(2)首先由弦平分半径,,可得,,,再根据,可得,即可证得,最后由即可求得.【详解】(1)证明:如图,连接,,,由圆周角定理得:,,与相切,,,,,;(2)解:如图:连接,弦平分半径,,,在中,,,,,,,,,.【点睛】本题考查了垂径定理,圆周角定理,直角三角形的性质,扇形的面积公式,作出辅助线是解决本题的关键.33.(2022·四川成都·中考真题)如图,在中,,以为直径作⊙,交边于点,在上取一点,使,连接,作射线交边于点.(1)求证:;(2)若,,求及的长.【答案】(1)见解析(2)BF=5,【分析】(1)根据中,,得到∠A+∠B=∠ACF+∠BCF=90°,根据,得到∠B=∠BCF,推出∠A=∠ACF;(2)根据∠B=∠BCF,∠A=∠ACF,得到AF=CF,BF=CF,推出AF=BF=AB,根据,AC=8,得到AB=10,得到BF=5,根据,得到,连接CD,根据BC是⊙O的直径,得到∠BDC=90°,推出∠B+∠BCD=90°,推出∠A=∠BCD,得到,推出,得到,根据∠FDE=∠BCE,∠B=∠BCE,得到∠FDE=∠B,推出DE∥BC,得到△FDE∽△FBC,推出,得到.(1)解:∵中,,∴∠A+∠B=∠ACF+∠BCF=90°,∵,∴∠B=∠BCF,∴∠A=∠ACF;(2)∵∠B=∠BCF,∠A=∠ACF∴AF=CF,BF=CF,∴AF=BF=AB,∵,AC=8,∴AB=10,∴BF=5,∵,∴,连接CD,∵BC是⊙O的直径,∴∠BDC=90°,∴∠B+∠BCD=90°,∴∠A=∠BCD,∴,∴,∴,∵∠FDE=∠BCE,∠B=∠BCE,∴∠FDE=∠B,∴DE∥BC,∴△FDE∽△FBC,∴,∴.【点睛】本题主要考查了圆周角,解直角三角形,勾股定理,相似三角形,解决问题的关键是熟练掌握圆周角定理及推论,运用勾股定理和正弦余弦解直角三角形,相似三角形的判定和性质.34.(2020·四川泸州·中考真题)如图,是的直径,点D在上,的延长线与过点B的切线交于点C,E为线段上的点,过点E的弦于点H.(1)求证:;(2)已知,,且,求的长.【答案】(1)见解析;(2)-2.【分析】(1)连接BD,根据圆周角定理得到∠ADB=90°,根据切线的性质得到∠ABC=90°,得到∠C=∠ABD,根据圆周角定理即可得到结论;(2)根据相似三角形的判定和性质以及勾股定理即可得到结论.【详解】解:(1)证明:如图1,连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵BC是⊙O的切线,∴∠ABC=90°,∴∠C+∠CAB=90°,∴∠C=∠ABD,∵∠AGD=∠ABD,∴∠AGD=∠C;(2)解:∵∠BDC=∠ABC=90°,∠C=∠C,∴△ABC∽△BDC,∴,∴,∴AC=9,∴AB=,∵CE=2AE,∴AE=3,CE=6,∵FH⊥AB,∴FH∥BC,∴△AHE∽△ABC,∴,∴,∴AH=,EH=2,如图2,连接AF,BF,∵AB是⊙O的直径,∴∠AFB=90°,∴∠AFH+∠BFH=∠AFH+∠FAH=90°,∴∠FAH=∠BFH,∴△AFH∽△FBH,∴,∴,∴FH=,∴EF=-2.【点睛】本题考查了切线的性质,相似三角形的判定和性质,圆周角定理,勾股定理,正确的作出辅助线是解题的关键.35.(2021·四川阿坝·中考真题)如图,AB是⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.(1)求证:;(2)若,,求CD的长.【答案】(1)见解析;(2).【分析】(1)连接OC,根据切线的性质,判断出AD∥OC,再应用平行线的性质,即可推得.(2)连接BC,通过证明△ADC△ACB,可求出AD的长,再在Rt△ADC中,通过勾股定理可求出CD的长.【详解】解:(1)证明:如图,连接OC,,∵CD是⊙O的切线,∴OC⊥CD.∵AD⊥CD,∴AD∥OC,∴∠DAC=∠ACO.∵OA=OC,∴∠CAB=∠ACO,∴∠DAC=∠CAB.(2)如图,连接BC∵AB是⊙O的直径,∴∠ACB=90°.∵AD⊥CD,∴∠ADC=90°.∴∠ADC=∠ACB.由(1)知∠DAC=∠CAB,∴△ADC△ACB.∴.∵,,则可设AD=2x,AB=3x,x>0,∴.解得x=2.∴AD=4.在Rt△ADC中,由勾股定理,得CD==.【点睛】此题主要考查了切线的性质和应用,以及平行线的性质和应用,要熟练掌握,解答此题的关键是要明确:若出现圆的切线,必连过切点的半径,得出垂直关系.36.(2022·四川·巴中市教育科学研究所中考真题)四边形内接于,直径与弦交于点,直线与相切于点.(1)如图1,若,且,求证:平分;(2)如图2,连接,若,求证:.【答案】(1)见解析(2)见

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论