2024年安徽省初中学业水平考试中考数学试卷(真题+答案)_第1页
2024年安徽省初中学业水平考试中考数学试卷(真题+答案)_第2页
2024年安徽省初中学业水平考试中考数学试卷(真题+答案)_第3页
2024年安徽省初中学业水平考试中考数学试卷(真题+答案)_第4页
2024年安徽省初中学业水平考试中考数学试卷(真题+答案)_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

年安徽省初中学业水平考试数学本卷共8大题,计23小题,满分150分,考试时间120分钟.一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A,B,C,D的四个选项,其中只有一个是正确的.题号12345678910答案1.-5的绝对值是A.5 B.-5 C.15 D.-2.据统计,2023年我国新能源汽车产量超过944万辆,其中944万用科学记数法表示为A.0.944×107 B.9.44×106 C.9.44×107 D.94.4×1063.某几何体的三视图如图所示,则该几何体为第3题图4.下列计算正确的是A.a3+a3=a6 B.a6÷a3=a2 C.(-a)2=a2 D.a2=5.若扇形AOB的半径为6,∠AOB=120°,则AB的长为A.2π B.3π C.4π D.6π6.已知反比例函数y=kx(k≠0)与一次函数y=2-x的图象的一个交点的横坐标为3,则kA.-3 B.-1 C.1 D.37.如图,在Rt△ABC中,AC=BC=2,点D在AB的延长线上,且CD=AB,则BD的长是第7题图A.10-2 B.6-2 C.22-2 D.22-68.已知实数a,b满足a-b+1=0,0<a+b+1<1,则下列判断正确的是A.-12<a<0 B.12<b<1 C.-2<2a+4b<1 D.-1<4a+29.在凸五边形ABCDE中,AB=AE,BC=DE,F是CD的中点.下列条件中,不能推出AF与CD一定垂直的是A.∠ABC=∠AED B.∠BAF=∠EAF C.∠BCF=∠EDF D.∠ABD=∠AEC10.如图,在Rt△ABC中,∠ABC=90°,AB=4,BC=2,BD是边AC上的高.点E,F分别在边AB,BC上(不与端点重合),且DE⊥DF.设AE=x,四边形DEBF的面积为y,则y关于x的函数图象为第10题图二、填空题(本大题共4小题,每小题5分,满分20分)11.若分式1x−4有意义,则实数x的取值范围是12.我国古代数学家张衡将圆周率取值为10,祖冲之给出圆周率的一种分数形式的近似值为227.比较大小:10

227(填“>”或“<”13.不透明的袋中装有大小质地完全相同的4个球,其中1个黄球、1个白球和2个红球.从袋中任取2个球,恰为2个红球的概率是.

14.如图,现有正方形纸片ABCD,点E,F分别在边AB,BC上,沿垂直于EF的直线折叠得到折痕MN,点B,C分别落在正方形所在平面内的点B',C'处,然后还原.(1)若点N在边CD上,且∠BEF=α,则∠C'NM=(用含α的式子表示);

(2)再沿垂直于MN的直线折叠得到折痕GH,点G,H分别在边CD,AD上,点D落在正方形所在平面内的点D'处,然后还原.若点D'在线段B'C'上,且四边形EFGH是正方形,AE=4,EB=8,MN与GH的交点为P,则PH的长为.

第14题图三、(本大题共2小题,每小题8分,满分16分)15.解方程:x2-2x=3.16.如图,在由边长为1个单位长度的小正方形组成的网格中建立平面直角坐标系xOy,格点(网格线的交点)A,B,C,D的坐标分别为(7,8),(2,8),(10,4),(5,4).(1)以点D为旋转中心,将△ABC旋转180°得到△A1B1C1,画出△A1B1C1;(2)直接写出以B,C1,B1,C为顶点的四边形的面积;(3)在所给的网格图中确定一个格点E,使得射线AE平分∠BAC,写出点E的坐标.第16题图四、(本大题共2小题,每小题8分,满分16分)17.乡村振兴战略实施以来,很多外出人员返乡创业.某村有部分返乡青年承包了一些田地,采用新技术种植A,B两种农作物.种植这两种农作物每公顷所需人数和投入资金如下表:农作物品种每公顷所需人数每公顷所需投入资金(万元)A48B39已知农作物种植人员共24位,且每人只参与一种农作物种植,投入资金共60万元,问A,B这两种农作物的种植面积各多少公顷?18.数学兴趣小组开展探究活动,研究了“正整数N能否表示为x2-y2(x,y均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n为正整数):N奇数4的倍数表示结果1=12-023=22-125=32-227=42-329=52-42…4=22-028=32-1212=42-2216=52-3220=62-42…一般结论2n-1=n2-(n-1)24n=

按上表规律,完成下列问题:(ⅰ)24=()2-()2;

(ⅱ)4n=;

(2)兴趣小组还猜测:像2,6,10,14,…这些形如4n-2(n为正整数)的正整数N不能表示为x2-y2(x,y均为自然数).师生一起研讨,分析过程如下:假设4n-2=x2-y2,其中x,y均为自然数.分下列三种情形分析:①若x,y均为偶数,设x=2k,y=2m,其中k,m均为自然数,则x2-y2=(2k)2-(2m)2=4(k2-m2)为4的倍数.而4n-2不是4的倍数,矛盾.故x,y不可能均为偶数.②若x,y均为奇数,设x=2k+1,y=2m+1,其中k,m均为自然数,则x2-y2=(2k+1)2-(2m+1)2=为4的倍数.

而4n-2不是4的倍数,矛盾.故x,y不可能均为奇数.③若x,y一个是奇数一个是偶数,则x2-y2为奇数,而4n-2是偶数,矛盾.故x,y不可能一个是奇数一个是偶数.由①②③可知,猜测正确.阅读以上内容,请在情形②的横线上填写所缺内容.五、(本大题共2小题,每小题10分,满分20分)19.科技社团选择学校游泳池进行一次光的折射实验.如图,光线自点B处发出,经水面点E折射到池底点A处.已知BE与水平线的夹角α=36.9°,点B到水面的距离BC=1.20m,点A处水深为1.20m,到池壁的水平距离AD=2.50m.点B,C,D在同一条竖直线上,所有点都在同一竖直平面内.记入射角为β,折射角为γ,求sinβsinγ的值(精确到0.参考数据:sin36.9°≈0.60,cos36.9°≈0.80,tan36.9°≈0.75.第19题图20.如图,☉O是△ABC的外接圆,D是直径AB上一点,∠ACD的平分线交AB于点E,交☉O于另一点F,FA=FE.(1)求证:CD⊥AB;(2)设FM⊥AB,垂足为M,若OM=OE=1,求AC的长.第20题图六、(本题满分12分)21.综合与实践项目背景无核柑橘是我省西南山区特产,该地区某村有甲,乙两块成龄无核柑橘园.在柑橘收获季节,班级同学前往该村开展综合实践活动,其中一个项目是:在日照、土质、空气湿度等外部环境基本一致的条件下,对两块柑橘园的优质柑橘情况进行调查统计,为柑橘园的发展规划提供一些参考.数据收集与整理从两块柑橘园采摘的柑橘中各随机选取200个.在技术人员指导下,测量每个柑橘的直径,作为样本数据.柑橘直径用x(单位:cm)表示.将所收集的样本数据进行如下分组:组别ABCDEx3.5≤x<4.54.5≤x<5.55.5≤x<6.56.5≤x<7.57.5≤x≤8.5整理样本数据,并绘制甲、乙两园样本数据的频数直方图,部分信息如下:图1甲园样本数据频数直方图图2乙园样本数据频数直方图任务1求图1中a的值.数据分析与运用任务2A,B,C,D,E五组数据的平均数分别取为4,5,6,7,8,计算乙园样本数据的平均数.任务3下列结论一定正确的是(填正确结论的序号).

①两园样本数据的中位数均在C组;②两园样本数据的众数均在C组;③两园样本数据的最大数与最小数的差相等.任务4结合市场情况,将C,D两组的柑橘认定为一级,B组的柑橘认定为二级,其它组的柑橘认定为三级,其中一级柑橘的品质最优,二级次之,三级最次.试估计哪个园的柑橘品质更优,并说明理由.根据所给信息,请完成以上所有任务.七、(本题满分12分)22.如图1,▱ABCD的对角线AC与BD交于点O,点M,N分别在边AD,BC上,且AM=CN.点E,F分别是BD与AN,CM的交点.(1)求证:OE=OF;(2)连接BM交AC于点H,连接HE,HF.(ⅰ)如图2,若HE∥AB,求证:HF∥AD;(ⅱ)如图3,若▱ABCD为菱形,且MD=2AM,∠EHF=60°,求ACBD的值第22题图1第22题图2第22题图3八、(本题满分14分)23.已知抛物线y=-x2+bx(b为常数)的顶点横坐标比抛物线y=-x2+2x的顶点横坐标大1.(1)求b的值;(2)点A(x1,y1)在抛物线y=-x2+2x上,点B(x1+t,y1+h)在抛物线y=-x2+bx上.(ⅰ)若h=3t,且x1≥0,t>0,求h的值;(ⅱ)若x1=t-1,求h的最大值.

2024年安徽省初中学业水平考试数学答案及解析题号1234567891011121314答案ABDCCABCDAx≠4>1(1)90°-α(2)351.A2.B3.D4.C5.C6.A7.B8.C9.D10.A11.x≠412.>13.114.(1)90°-α(2分)(2)35(3分)15.解:原方程可化为x2-2x-3=0,因为Δ=(-2)2-4×1×(-3)=16>0,所以方程有两个不等的实数根x1=2+162=3,x2=2−16216.解:(1)如图所示. 3分(2)40. 6分(3)(3,0)或(4,2)或(5,4)或(6,6). 8分(写出一个即可)17.解:设A,B两种农作物的种植面积分别为x,y公顷.根据题意,得4解得x答:A,B两种农作物的种植面积分别为3公顷、4公顷. 8分18.解:(1)(ⅰ)7,5. 2分(ⅱ)(n+1)2-(n-1)2. 5分(2)4(k2-m2+k-m). 8分19.解:过点E作EH⊥AD,垂足为点H,由题意可知,∠CEB=α=36.9°,EH=1.20,CE=BCtan36.9°AH=AD-CE=2.50-1.60=0.90,故AE=AH2+EH2=0.90又sinβ=sin∠CBE=CEBE=cos∠CEB=cosα≈0.80,故sinβsinγ=0.20.(1)证明:因为FA=FE,所以∠FAE=∠AEF.又∠FAE与∠BCE都是BF所对的圆周角,故∠FAE=∠BCE.由于∠AEF=∠CEB,则∠CEB=∠BCE.因为CE平分∠ACD,所以∠ACE=∠DCE.又AB是直径,所以∠ACB=90°.于是∠CEB+∠DCE=∠BCE+∠ACE=∠ACB=90°.故∠CDE=90°,即CD⊥AB. 5分(2)解:由(1)知,∠BEC=∠BCE,所以BE=BC.又AF=EF,FM⊥AB,故MA=ME=2,AE=4.从而圆的半径OA=OB=AE-OE=3,于是BC=BE=OB-OE=2.在△ABC中,AB=6,BC=2,∠ACB=90°,所以AC=AB2−BC2=6221.解:任务1a=200-(15+70+50+25)=40. 3分任务2因为15×所以乙园样本数据的平均数为6. 6分任务3①. 9分任务4由样本数据频数直方图可得,乙园的一级柑橘所占比例大于甲园,根据样本估计总体,因此可以认为乙园柑橘品质更优.(本答案仅供参考,其它答案请酌情赋分) 12分22.(1)证明:由题意知,AD∥BC,AM∥CN,OA=OC.由于AM=CN,则四边形AMCN是平行四边形,从而AN∥CM,所以∠OAE=∠OCF.在△AOE与△COF中,因为OA=OC,∠OAE=∠OCF,∠AOE=∠COF.所以△AOE≌△COF.故OE=OF. 4分(2)(ⅰ)证明:因为HE∥AB,所以OHOA又OB=OD,OE=OF,则OHOA由于∠HOF=∠AOD,故△HOF∽△AOD.于是∠OHF=∠OAD,所以HF∥AD. 8分(ⅱ)解:因为▱ABCD为菱形,所以AC⊥BD.又OE=OF,∠EHF=60°,所以∠EHO=∠FHO=30°,于是OH=3OE,因为AM∥BC,MD=2AM,所以AHHC=AMBC=从而OA+OH=3(OA-OH),所以OA=2OH.又因为BN∥AD,MD=2AM,AM=CN,所以BEED=BNAD=从而3(OB-OE)=2(OB+OE),所以OB=5OE.故ACBD=OAOB=2OH23.(1)解:因为抛物线y=-x2+bx的顶点横坐标为b2,y=-x2+2x由条件得b2-1=1,解得b=4. (2)解:因为点A(x1,y1)在抛物线y=-x2+2x上,所以y1=-x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论