2025届河南省三门峡市陕州区第一高级中学高二上数学期末考试模拟试题含解析_第1页
2025届河南省三门峡市陕州区第一高级中学高二上数学期末考试模拟试题含解析_第2页
2025届河南省三门峡市陕州区第一高级中学高二上数学期末考试模拟试题含解析_第3页
2025届河南省三门峡市陕州区第一高级中学高二上数学期末考试模拟试题含解析_第4页
2025届河南省三门峡市陕州区第一高级中学高二上数学期末考试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河南省三门峡市陕州区第一高级中学高二上数学期末考试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线C的离心率为,,是C的两个焦点,P为C上一点,,若△的面积为,则双曲线C的实轴长为()A.1 B.2C.4 D.62.已知等差数列的前项和为,,,当取最大时的值为()A. B.C. D.3.南宋数学家杨辉所著的《详解九章算法》中有如下俯视图所示的几何体,后人称之为“三角垛”.其最上层有1个球,第二层有3个球,第三层有6个球,…,则第十层球的个数为()A.45 B.55C.90 D.1104.在空间直角坐标系中,点关于平面的对称点为,则()A.-4 B.-10C.4 D.105.已知等比数列中,,前三项之和,则公比的值为()A1 B.C.1或 D.或6.已知点是椭圆上的任意点,是椭圆的左焦点,是的中点,则的周长为()A. B.C. D.7.原点到直线的距离的最大值为()A. B.C. D.8.某考点配备的信号检测设备的监测范围是半径为100米的圆形区域,一名工作人员持手机以每分钟50米的速度从设备正东方向米的处出发,沿处西北方向走向位于设备正北方向的处,则这名工作人员被持续监测的时长为()A.1分钟 B.分钟C.2分钟 D.分钟9.用这3个数组成没有重复数字的三位数,则事件“这个三位数是偶数”与事件“这个三位数大于342”()A.是互斥但不对立事件 B.不是互斥事件C.是对立事件 D.是不可能事件10.执行如图所示的程序框图,则输出的的值是()A. B.C. D.11.命题P:ax2+2x﹣1=0有实数根,若¬p是假命题,则实数a的取值范围是()A.{a|a<1} B.{a|a≤﹣1}C.{a|a≥﹣1} D.{a|a>﹣1}12.命题“”的否定是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.小明同学发现家中墙壁上灯光边界类似双曲线的一支.如图,P为双曲线的顶点,经过测量发现,该双曲线的渐近线相互垂直,AB⊥PC,AB=60cm,PC=20cm,双曲线的焦点位于直线PC上,则该双曲线的焦距为____cm.14.在的展开式中,含项的系数为______(结果用数值表示)15.已知椭圆的焦点分别为,A为椭圆上一点,则________16.曲线在点处的切线的方程为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数f(x)=(1)求函数f(x)在x=1处的切线方程;(2)求证:18.(12分)在四棱锥中,底面为直角梯形,,,平面底面,为的中点,是棱上的点,,,.(1)求证:平面平面;(2)若,求直线与所成角的余弦值.19.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,,,△ABC的面积为(1)求a;(2)若D为BC边上一点,且∠BAD=,求∠ADC的正弦值20.(12分)如图,在三棱锥中,底面,.点,,分别为棱,,的中点,是线段的中点,,(1)求证:平面;(2)求二面角的正弦值;(3)已知点在棱上,且直线与直线所成角的余弦值为,求线段的长21.(12分)在平面直角坐标系xOy中,已知抛物线()的焦点F到双曲线的渐近线的距离为1.(1)求抛物线C的方程;(2)若不经过原点O的直线l与抛物线C交于A、B两点,且,求证:直线l过定点.22.(10分)设命题对于任意,不等式恒成立.命题实数a满足(1)若命题p为真,求实数a的取值范围;(2)若“p或q”为真,“p且q”为假,求实数a的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由已知条件可得,,,再由余弦定理得,进而求其正弦值,最后利用三角形面积公式列方程求参数a,即可知双曲线C的实轴长.【详解】由题意知,点P在右支上,则,又,∴,,又,∴,则在△中,,∴,故,解得,∴实轴长为,故选:C.2、B【解析】由已知条件及等差数列通项公式、前n项和公式求基本量,再根据等差数列前n项和的函数性质判断取最大时的值.【详解】令公差为,则,解得,所以,当时,取最大值.故选:B3、B【解析】根据题意,发现规律并将规律表达出来,第层有个球.【详解】根据规律,可以得知:第一层有个球;第二层有个球;第三层有个球,则根据规律可知:第层有个球设第层的小球个数为,则有:故第十层球的个数为:故选:4、A【解析】根据关于平面对称的点的规律:横坐标、纵坐标保持不变,竖坐标变为它的相反数,即可求出点关于平面的对称点的坐标,再利用向量的坐标运算求.【详解】解:由题意,关于平面对称的点横坐标、纵坐标保持不变,竖坐标变为它的相反数,从而有点关于对称的点的坐标为(2,−1,-3).故选:A【点睛】本题以空间直角坐标系为载体,考查点关于面的对称,考查数量积的坐标运算,属于基础题5、C【解析】根据条件列关于首项与公比的方程组,即可解得公比,注意等比数列求和公式使用条件.【详解】等比数列中,,前三项之和,若,,,符合题意;若,则,解得,即公比的值为1或,故选:C【点睛】本题考查等比数列求和公式以及基本量计算,考查基本分析求解能力,属基础题.6、A【解析】设椭圆另一个焦点为,连接,利用中位线的性质结合椭圆的定义可求得结果.【详解】在椭圆中,,,,如图,设椭圆的另一个焦点为,连接,因为、分别为、的中点,则,则的周长为,故选:A.7、C【解析】求出直线过的定点,当时,原点到直线距离最大,则可求出原点到直线距离的最大值;【详解】因为可化为,所以直线过直线与直线交点,联立可得所以直线过定点,当时,原点到直线距离最大,最大距离即为,此时最大值为,故选:C.8、C【解析】以设备的位置为坐标原点,其正东方向为轴正方向,正北方向为轴正方向建立平面直角坐标系,求得直线和圆的方程,利用点到直线的距离公式和圆的弦长公式,求得的长,进而求得持续监测的时长.【详解】以设备的位置为坐标原点,其正东方向为轴正方向,正北方向为轴正方向建立平面直角坐标系,如图所示,则,,可得,圆记从处开始被监测,到处监测结束,因为到的距离为米,所以米,故监测时长为分钟故选:C.9、B【解析】根据题意列举出所有可能性,进而根据各类事件的定义求得答案.【详解】由题意,将2,3,4组成一个没有重复数字的三位数的情况有:{234,243,324,342,423,432},其中偶数有{234,324,342,432},大于342的有{423,432}.所以两个事件不是互斥事件,也不是对立事件.故选:B.10、C【解析】由题意确定流程图的功能,然后计算其输出值即可.【详解】运行程序,不满足,,,不满足,,,不满足,,,不满足,,,不满足,,,不满足,,,满足,利用裂项求和可得:.故选:C.【点睛】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构(2)要识别、运行程序框图,理解框图所解决的实际问题(3)按照题目的要求完成解答并验证11、C【解析】根据是假命题,判断出是真命题.对分成,和两种情况,结合方程有实数根,求得的取值范围.详解】┐p是假命题,则p是真命题,∴ax2+2x﹣1=0有实数根,当a=0时,方程为2x﹣1=0,解得x=0.5,有根,符合题意;当a≠0时,方程有根,等价于△=4+4a≥0,∴a≥﹣1且,综上所述,a的可能取值为a≥﹣1故选:C【点睛】本小题主要考查根据命题否定的真假性求参数,属于基础题.12、C【解析】特称命题的否定,先把存在量词改为全称量词,再把结论进行否定即可.【详解】命题“”的否定是“”.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】建立直角坐标系,利用代入法、双曲线的对称性进行求解即可.【详解】建立如图所示的直角坐标系,设双曲线的标准方程为:,因为该双曲线的渐近线相互垂直,所以,即,因为AB=60cm,PC=20cm,所以点的坐标为:,代入,得:,因此有,所以该双曲线的焦距为,故答案为:14、12【解析】通过二次展开式就可以得到.【详解】的展开式中含含项的系数为故答案为:1215、4【解析】直接利用椭圆的定义即可求解.【详解】因为椭圆的焦点分别为,A为椭圆上一点,所以.故答案为:416、【解析】求出导函数,得切线斜率后可得切线方程【详解】,∴切线斜率为,切线方程为故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)y=5x-1;(2)证明见解析【解析】(1)求出导函数,求出切线的斜率,切点坐标,然后求切线方程(2)不等式化简为.设,求出导函数,判断函数的单调性求解函数的最值,然后证明即可【详解】解:(1)的定义域为,的导数由(1)可得,则切点坐标为,所求切线方程为(2)证明:即证.设,则,由,得当时,;当时,在上单调递增,在上单调递减,(1),即不等式成立,则原不等式成立18、(1)证明见解析;(2);【解析】(1)证明,利用面面垂直的性质可得出平面,再利用面面垂直的判定定理可证得平面平面;(2)连接,以点为坐标原点,、、所在直线分别为轴建立空间直角坐标系,设,根据可得出,求出的值,利用空间向量法可求得直线与所成角的余弦值.【详解】(1)为的中点,且,则,又因为,则,故四边形为平行四边形,因为,故四边形为矩形,所以,平面平面,平面平面,平面,平面,因为平面,因此,平面平面;(2)连接,由(1)可知,平面,,为的中点,则,以点为坐标原点,所在直线分别为轴建立空间直角坐标系,则、、、、,设,,因为,则,解得,,,则.因此,直线与所成角的余弦值为.19、(1)(2)【解析】(1)利用面积公式及余弦定理可求解;(2)由正弦定理得到,再运用同角函数的关系得到,最后运用正弦的两角和公式求解即可.【小问1详解】∵,,,∴由余弦定理:,∴【小问2详解】在中,由正弦定理得,∴,易知B为锐角,∴,∴20、(1)证明见解析;(2);(3)或【解析】本小题主要考查直线与平面平行、二面角、异面直线所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.首先要建立空间直角坐标系,写出相关点的坐标,证明线面平行只需求出平面的法向量,计算直线对应的向量与法向量的数量积为0,求二面角只需求出两个半平面对应的法向量,借助法向量的夹角求二面角,利用向量的夹角公式,求出异面直线所成角的余弦值,利用已知条件,求出的值.试题解析:如图,以A为原点,分别以,,方向为x轴、y轴、z轴正方向建立空间直角坐标系.依题意可得A(0,0,0),B(2,0,0),C(0,4,0),P(0,0,4),D(0,0,2),E(0,2,2),M(0,0,1),N(1,2,0).(1)证明:=(0,2,0),=(2,0,).设,为平面BDE的法向量,则,即.不妨设,可得.又=(1,2,),可得.因为平面BDE,所以MN//平面BDE.(2)解:易知为平面CEM的一个法向量.设为平面EMN的法向量,则,因为,,所以.不妨设,可得.因此有,于是.所以,二面角C—EM—N的正弦值为.(3)解:依题意,设AH=h(),则H(0,0,h),进而可得,.由已知,得,整理得,解得,或.所以,线段AH的长为或.【考点】直线与平面平行、二面角、异面直线所成角【名师点睛】空间向量是解决空间几何问题的锐利武器,不论是求空间角、空间距离还是证明线面关系利用空间向量都很方便,利用向量夹角公式求异面直线所成的角又快又准,特别是借助平面的法向量求线面角,二面角或点到平面的距离都很容易.21、(1)(2)证明见解析【解析】(1)求出双曲线的渐近线方程,由点到直线距离公式可得参数值得抛物线方程;(2)设直线方程为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论