版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省华侨中学2025届高二数学第一学期期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若是函数的一个极值点,则的极大值为()A. B.C. D.2.在流行病学中,基本传染数是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.假设某种传染病的基本传染数,平均感染周期为4天,那么感染人数超过1000人大约需要()(初始感染者传染个人为第一轮传染,这个人每人再传染个人为第二轮传染)A.20天 B.24天C.28天 D.32天3.在等腰中,在线段斜边上任取一点,则线段的长度大于的长度的概率()A B.C. D.4.设函数的定义域为,满足,且当时,.若对任意,都有,则的取值范围是()A. B.C. D.5.已知直线,,若,则实数的值是()A.0 B.2或-1C.0或-3 D.-36.圆与圆的位置关系是()A.相交 B.相离C.内切 D.外切7.设AB是椭圆()的长轴,若把AB一百等分,过每个分点作AB的垂线,交椭圆的上半部分于P1、P2、…、P99,F1为椭圆的左焦点,则的值是()A. B.C. D.8.已知等比数列的前3项和为3,,则()A. B.4C. D.19.已知函数在处的导数为,则()A. B.C. D.10.若等比数列的前n项和,则r的值为()A. B.C. D.11.内角、、的对边分别为、、,若,,,则()A. B.C. D.12.已知两个向量,,且,则的值为()A.-2 B.2C.10 D.-10二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆的离心率为.(1)证明:;(2)若点在椭圆的内部,过点的直线交椭圆于、两点,为线段的中点,且.①求直线的方程;②求椭圆的标准方程.14.已知函数,有且只有一个零点,则实数的取值范围是_______.15.数列的前项和为,则的通项公式为________.16.我国古代,9是数字之极,代表尊贵之意,所以中国古代皇家建筑中包含许多与9相关的设计.例如,北京天坛圆丘的底面由扇环形的石板铺成(如图),最高一层是一块天心石,围绕它的第一圈有9块石板,从第二圈开始,每一圈比前一圈多9块,共有9圈,则前9圈的石板总数是__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线,,,其中与的交点为P(1)求过点P且与平行的直线方程;(2)求以点P为圆心,截所得弦长为8的圆的方程18.(12分)已知函数(Ⅰ)讨论函数的极值点的个数(Ⅱ)若,,求的取值范围19.(12分)已知等差数列的前项和为,,且.(1)求数列的通项公式;(2)证明:数列的前项和.20.(12分)在中,,,请再从条件①、条件②这两个条件中选择一个作为已知,然后解答下列问题.(1)求角的大小;(2)求的面积.条件①:;条件②:.21.(12分)已知函数,记f(x)的导数为f′(x).若曲线f(x)在点(1,f(1))处的切线斜率为﹣3,且x=2时y=f(x)有极值,(Ⅰ)求函数f(x)的解析式;(Ⅱ)求函数f(x)在[﹣1,1]上的最大值和最小值22.(10分)已知数列满足各项均不为0,,且,.(1)证明:为等差数列,并求的通项公式;(2)令,,求.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先对函数求导,由已知,先求出,再令,并判断函数在其左右两边的单调性,从而确定极大值点,然后带入原函数即可完成求解.【详解】因为,,所以,所以,,令,解得或,所以当,,单调递增;时,,单调递减;当,,单调递增,所以的极大值为故选:D2、B【解析】根据题意列出方程,利用等比数列的求和公式计算n轮传染后感染的总人数,得到指数方程,求得近似解,然后可得需要的天数.【详解】感染人数由1个初始感染者增加到1000人大约需要n轮传染,则每轮新增感染人数为,经过n轮传染,总共感染人数为:即,解得,所以感染人数由1个初始感染者增加到1000人大约需要24天,故选:B【点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程3、C【解析】利用几何概型的长度比值,即可计算.【详解】设直角边长,斜边,则线段的长度大于的长度的概率.故选:C4、D【解析】由题意得当时,,根据题意作出函数的部分图象,再结合图象即可求出答案【详解】解:当时,,又,∴当时,,∴在上单调递增,在上单调递减,且;又,则函数图象每往右平移两个单位,纵坐标变为原来的倍,作出其大致图象得,当时,由得,或,由图可知,若对任意,都有,则,故选:D【点睛】本题主要考查函数的图象变换,考查数形结合思想,属于中档题5、C【解析】由,结合两直线一般式有列方程求解即可.【详解】由知:,解得:或故选:C.6、A【解析】求出两圆的圆心及半径,求出圆心距,从而可得出结论.【详解】解:圆的圆心为,半径为,圆圆心为,半径为,则两圆圆心距,因为,所以两圆相交.故选:A.7、D【解析】根据椭圆的定义,写出,可求出的和,又根据关于纵轴成对称分布,得到结果详解】设椭圆右焦点为F2,由椭圆的定义知,2,,,由题意知,,,关于轴成对称分布,又,故所求的值为故选:D8、D【解析】设等比数列公比为,由已知结合等比数列的通项公式可求得,,代入即可求得结果.【详解】设等比数列的公比为,由,得即,又,即又,,解得又等比数列的前3项和为3,故,即,解得故选:D9、C【解析】利用导数的定义即可求出【详解】故选:C10、B【解析】利用成等比数列来求得.【详解】依题意,等比数列的前n项和,,,所以.故选:B11、C【解析】利用正弦定理可求得边的长.【详解】由正弦定理得.故选:C.12、C【解析】根据向量共线可得满足的关系,从而可求它们的值,据此可得正确的选项.【详解】因为,故存在常数,使得,所以,故,所以,故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、(1)证明见解析;(2)①;②.【解析】(1)由可证得结论成立;(2)①设点、,利用点差法可求得直线的斜率,利用点斜式可得出所求直线的方程;②将直线的方程与椭圆的方程联立,列出韦达定理,由可得出,利用平面向量数量积的坐标运算可得出关于的等式,可求出的值,即可得出椭圆的方程.【详解】(1),,因此,;(2)①由(1)知,椭圆的方程为,即,当在椭圆的内部时,,可得.设点、,则,所以,,由已知可得,两式作差得,所以,所以,直线方程为,即.所以,直线的方程为;②联立,消去可得.,由韦达定理可得,,又,而,,,解得合乎题意,故,因此,椭圆的方程为.14、【解析】由题知方程,,有且只有一个零点,进而构造函数,利用导数研究函数单调性与函数值得变化情况,作出函数的大致图像,数形结合求解即可.【详解】解:因为函数,,有且只有一个零点,所以方程,,有且只有一个零点,令,则,,令,则所以为上的单调递减函数,因为,所以当时,;当时,;所以当时,;当时,,所以在上单调递增,在上单调递减,因为当趋近于时,趋近于,当趋近于时,趋近于,且,时,,故的图像大致如图所示,所以方程,,有且只有一个零点等价于或.所以实数的取值范围是故答案为:15、【解析】讨论和两种情况,进而利用求得答案.【详解】由题意,时,,时,,则,于是,故答案为:16、405【解析】前9圈的石板数依次组成一个首项为9,公差为9的等差数列,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)首先求、的交点坐标,根据的斜率,应用点斜式写出过P且与平行的直线方程;(2)根据弦心距、弦长、半径的关系求圆的半径,结合P的坐标写出圆的方程.【小问1详解】联立、得:,可得,故,又的斜率为,则过P且与平行的直线方程,∴所求直线方程为.【小问2详解】由(1),P到的距离,∴以P为圆心,截所得弦长为8的圆的半径,∴所求圆的方程为.18、(Ⅰ)答案见解析;(Ⅱ).【解析】(Ⅰ)求得,分,和三种情况讨论,求得函数的单调性,结合极值的概念,即可求解;(Ⅱ)由不等式,转化为当时,不等式恒成立,设,利用导数求得函数的单调性与最值,即可求解.【详解】(Ⅰ)由题意,函数的定义域为,且,当时,令,解得,令,解得或,故在上单调递减,在,上单调递增,所以有一个极值点;当时,令,解得或,令,得,故在,上单调递减,在上单调递增,所以有一个极值点;当时,上单调递增,在上单调递减,所以没有极值点综上所述,当时,有个极值点;当时,没有极值点.(Ⅱ)由,即,可得,即当时,不等式恒成立,设,则设,则因为,所以,所以在上单调递增,所以,所以在上单调递减,在上单调递增,所以,所以所以的取值范围是.【点睛】对于利用导数研究不等式的恒成立问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题3、根据恒成求解参数的取值时,一般涉及分类参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,通常要设出导数的零点,难度较大.19、(1)(2)证明见解析.【解析】(1)设等差数列的公差为,根据题意可得出关于、的方程组,解出这两个量的值,可得出数列的通项公式;(2)求得,利用裂项法可求得,即可证得原不等式成立.【小问1详解】解:设等差数列的公差为,则,解得,因此,.【小问2详解】证明:,因此,.故原不等式得证.20、(1)条件选择见解析,(2)【解析】(1)选①,利用余弦定理求出的值,结合角的取值范围,即可求得角的值;选②,利用余弦定理可求出的值,并利用余弦定理求出的值,结合角的取值范围,即可求得角的值;(2)利用三角形的面积公式可求得的面积.【小问1详解】解:选①,,由余弦定理可得,,所以,.选②,,整理可得,,解得,由余弦定理可得,,所以,.【小问2详解】解:由三角形的面积公式可得.21、(Ⅰ)f(x)=x3﹣3x2+1;(Ⅱ)最大值为1,最小值为﹣3【解析】(Ⅰ)求导可得f′(x)的解析式,根据导数的几何意义,可得k=f′(1)=-3,又在x=2处有极值,所以f′(2)=0,即可求得a,b的值,即可得答案;(Ⅱ)由(Ⅰ)可得f′(x)的解析式,令f′(x)=0,解得x=0或x=2,讨论f(x)在﹣1<x<0,0<x<1上的单调性,即可求得f(x)的极值,检验边界值,即可得答案.【详解】(Ⅰ)由题意得:f′(x)=3x2+2ax+b,所以k=f′(1)=3+2a+b=﹣3,f′(2)=12+4a+b=0,解得a=﹣3,b=0,所以f(x)=x3﹣3x2+1;(Ⅱ)由(Ⅰ)知,令f′(x)=3x2﹣6x=0,解得x=0或x=2,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度水陆联运货物保险及运输合同
- 二零二五年度新能源储能技术聘用合同8篇
- 二零二四年度信息化设备融资租赁管理合同3篇
- 课件:正确认识高职院校内部质量保证体系诊断与改进
- 二零二五年度牧草生物质能项目合作协议4篇
- 2025版农家乐民宿租赁管理服务合同2篇
- 二零二五版年薪制劳动合同:房地产企业销售精英激励方案4篇
- 第三单元 资产阶级民主革命与中华民国的建立(解析版)- 2023-2024学年八年级历史上学期期中考点大串讲(部编版)
- 2025年度个人家政服务分期支付合同范本2篇
- 二零二五年度地铁车站安全门系统采购合同
- 2024年苏州工业园区服务外包职业学院高职单招职业适应性测试历年参考题库含答案解析
- 人教版初中语文2022-2024年三年中考真题汇编-学生版-专题08 古诗词名篇名句默写
- 2024-2025学年人教版(2024)七年级(上)数学寒假作业(十二)
- 山西粤电能源有限公司招聘笔试冲刺题2025
- ESG表现对企业财务绩效的影响研究
- 医疗行业软件系统应急预案
- 使用错误评估报告(可用性工程)模版
- 《精密板料矫平机 第2部分:技术规范》
- 黑枸杞生物原液应用及产业化项目可行性研究报告
- 2024年黑龙江省政工师理论知识考试参考题库(含答案)
- 四年级上册脱式计算300题及答案
评论
0/150
提交评论