福建省六校2025届高二上数学期末综合测试试题含解析_第1页
福建省六校2025届高二上数学期末综合测试试题含解析_第2页
福建省六校2025届高二上数学期末综合测试试题含解析_第3页
福建省六校2025届高二上数学期末综合测试试题含解析_第4页
福建省六校2025届高二上数学期末综合测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省六校2025届高二上数学期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等差数列的前n项和为,且,,则为()A. B.C. D.2.已知,,则等于()A.2 B.C. D.3.椭圆C:的焦点为,,点P在椭圆上,若,则的面积为()A.48 B.40C.28 D.244.如图,在四面体中,,,,,为线段的中点,则等于()A B.C. D.5.已知,记M到x轴的距离为a,到y轴的距离为b,到z轴的距离为c,则()A. B.C. D.6.下列直线中,倾斜角最大的为()A. B.C. D.7.方程表示的曲线是A.两条直线 B.两条射线C.两条线段 D.一条直线和一条射线8.已知函数,则()A. B.0C. D.19.如图所示,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,则点P的轨迹是()A.圆 B.双曲线C.抛物线 D.椭圆10.在三棱锥中,点E,F分别是的中点,点G在棱上,且满足,若,则()A. B.C. D.11.已知p:,那么p的一个充分不必要条件是()A. B.C. D.12.世界上最早在理论上计算出“十二平均律”的是我国明代杰出的律学家朱载堉,他当时称这种律制为“新法密率”十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它前一个单音的频率的比都相等,且最后一个单音是第一个单音频率的2倍.已知第十个单音的频率,则与第四个单音的频率最接近的是()A.880 B.622C.311 D.220二、填空题:本题共4小题,每小题5分,共20分。13.已知平行四边形内接于椭圆,且的斜率之积为,则椭圆的离心率为________14.程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第七个孩子分得斤数为___________.15.甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现同时从甲、乙两口袋中各任取一个球交换放入对方口袋,共进行了2次这样的操作后,甲口袋中恰有2个黑球的概率为__________________.16.若函数在区间上的最大值是,则__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某种机械设备随着使用年限的增加,它的使用功能逐渐减退,使用价值逐年减少,通常把它使用价值逐年减少的“量”换算成费用,称之为“失效费”.某种机械设备的使用年限(单位:年)与失效费(单位:万元)的统计数据如下表所示:使用年限(单位:年)1234567失效费(单位:万元)2.903.303.604.404.805.205.90(1)由上表数据可知,可用线性回归模型拟合与的关系.请用相关系数加以说明;(精确到0.01)(2)求出关于的线性回归方程,并估算该种机械设备使用8年的失效费参考公式:相关系数线性回归方程中斜率和截距最小二乘估计计算公式:,参考数据:,,18.(12分)如图,在四棱锥中,平面ABCD,,,且,,.(1)求证:平面PAC;(2)已知点M是线段PD上的一点,且,当三棱锥的体积为1时,求实数的值.19.(12分)已知圆,圆.(1)试判断圆C与圆M的位置关系,并说明理由;(2)若过点的直线l与圆C相切,求直线l的方程.20.(12分)已知,是函数的两个极值点.(1)求的解析式;(2)记,,若函数有三个零点,求的取值范围.21.(12分)已知(1)讨论函数的单调性;(2)若函数在上有1个零点,求实数a的取值范围22.(10分)已知椭圆的焦点为,且长轴长是焦距的倍(1)求椭圆的标准方程;(2)若斜率为1的直线与椭圆相交于两点,已知点,求面积的最大值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】直接由等差数列求和公式结合,求出,再由求和公式求出即可.【详解】由题意知:,解得,则.故选:C.2、D【解析】利用两角和的正切公式计算出正确答案.【详解】.故选:D3、D【解析】根据给定条件结合椭圆定义求出,再判断形状计算作答.【详解】椭圆C:的半焦距,长半轴长,由椭圆定义得,而,且,则有是直角三角形,,所以的面积为24.故选:D4、D【解析】根据空间向量的线性运算求解【详解】由已知,故选:D5、C【解析】分别求出点M在x轴,y轴,z轴上的投影点的坐标,再借助空间两点间距离公式计算作答.【详解】设点M在x轴上的投影点,则,而x轴的方向向量,由得:,解得,则,设点M在y轴上的投影点,则,而y轴的方向向量,由得:,解得,则,设点M在z轴上的投影点,则,而z轴的方向向量,由得:,解得,则,所以.故选:C6、D【解析】首先分别求直线的斜率,再结合直线倾斜角与斜率的关系,即可判断选项.【详解】A.直线的斜率;B.直线的斜率;C.直线的斜率;D.直线的斜率,因为,结合直线的斜率与倾斜角的关系,可知直线的倾斜角最大.故选:D7、D【解析】由,得2x+3y−1=0或.即2x+3y−1=0(x⩾3)为一条射线,或x=4为一条直线.∴方程表示的曲线是一条直线和一条射线.故选D.点睛:在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线在求解方程时要注意变量范围.8、B【解析】先求导,再代入求值.详解】,所以.故选:B9、D【解析】根据题意知,所以,故点P的轨迹是椭圆.【详解】由题意知,关于CD对称,所以,故,可知点P的轨迹是椭圆.【点睛】本题主要考查了椭圆的定义,属于中档题.10、B【解析】利用空间向量的加、减运算即可求解.【详解】由题意可得故选:B.11、C【解析】按照充分不必要条件依次判断4个选项即可.【详解】A选项:,错误;B选项:,错误;C选项:,,正确;D选项:,错误.故选:C.12、C【解析】依题意,每一个单音的频率构成一个等比数列,由,算出公比,结合,即可求出.【详解】设第一个单音的频率为,则最后一个单音的频率为,由题意知,且每一个单音的频率构成一个等比数列,设公比为,则,解得:又,则与第四个单音的频率最接近的是311,故选:C【点睛】关键点点睛:本题考查等比数列通项公式的运算,解题的关键是分析题意将其转化为等比数列的知识,考查学生的计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、##0.5【解析】根据对称性设,,,根据得到,再求离心率即可.【详解】由对称性,,关于原点对称,设,,,,故.故答案为:14、167【解析】由题设知8个孩子分得斤数是公差为17的等差数列,设第一个孩子分得斤,应用等差数列前n项和公式求,进而由等差数列通项公式求即可.【详解】由题意,设第一个孩子分得斤,则,所以,可得,故斤.故答案为:167.15、【解析】分两类:两次都互相交换白球的概率和第一次甲交出黑球收到白球,且第二次甲交出白球收到黑球的概率求和可得答案.【详解】分两类:①两次都互相交换白球的概率为;②第一次甲交出黑球收到白球,且第二次甲交出白球收到黑球的概率为.故答案为:.16、0【解析】由函数,又由,则,根据二次函数的性质,即可求解函数的最大值,得到答案.【详解】由函数,因为,所以,当时,则,所以.【点睛】本题主要考查了余弦函数的性质,以及二次函数的图象与性质,其中解答中根据余弦函数,转化为关于的二次函数,利用二次函数的图象与性质是解答的关键,着重考查了转化思想,以及推理与计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案见解析;(2);失效费为6.3万元【解析】(1)根据相关系数公式计算出相关系数可得结果;(2)根据公式求出和可得关于的线性回归方程,再代入可求出结果.【详解】(1)由题意,知,,∴结合参考数据知:因为与的相关系数近似为0.99,所以与的线性相关程度相当大,从而可以用线性回归模型拟合与的关系(2)∵,∴∴关于的线性回归方程为,将代入线性回归方程得万元,∴估算该种机械设备使用8年的失效费为6.3万元18、(1)证明见解析(2)3【解析】(1)证明出,且,从而证明出线面垂直;(2)先用椎体体积公式求出,利用体积之比得到线段之比,从而得到的值.【小问1详解】证明:∵平面ABCD,且平面ABCD,∴.又因为,且,∴四边形ABCD为直角梯形.又因为,,易得,,∴,∴.又因为AC,PA是平面PAC的两条相交直线,∴平面PAC.【小问2详解】由(1)知且,∴.又∵平面ABCD,.又∵,∴,∴点M到平面ABC的距离为,∴,∴.19、(1)圆C与圆M相交,理由见解析(2)或【解析】(1)利用圆心距与半径的关系即可判断结果;(2)讨论,当直线l的斜率不存在时则方程为,当直线l的斜率存在时,设其方程为,利用圆心到直线的距离等于半径计算即可得出结果.【小问1详解】把圆M的方程化成标准方程,得,圆心为,半径.圆C的圆心为,半径,因为,所以圆C与圆M相交,【小问2详解】①当直线l的斜率不存在时,直线l的方程为到圆心C距离为2,满足题意;②当直线l的斜率存在时,设其方程为,由题意得,解得,故直线l的方程为.综上,直线l的方程为或.20、(1);(2)【解析】(1)根据极值点的定义,可知方程的两个解即为,,代入即得结果;(2)根据题意,将方程转化为,则函数与直线在区间,上有三个交点,进而求解的取值范围【详解】解:(1)因为,所以根据极值点定义,方程的两个根即为,,,代入,,可得,解之可得,,故有;(2)根据题意,,,,根据题意,可得方程在区间,内有三个实数根,即函数与直线在区间,内有三个交点,又因为,则令,解得;令,解得或,所以函数在,上单调递减,在上单调递增;又因为,,,,函数图象如下所示:若使函数与直线有三个交点,则需使,即21、(1)答案见解析;(2).【解析】(1)对函数求导,按a值的正负分析讨论导数值的符号计算作答.(2)求出函数的解析式并求导,再按在值的正负分段讨论推理作答.【小问1详解】函数的定义域为R,求导得:当时,当时,,当时,,则在上单调递减,在上单调递增,当时,令,得,若,即时,,则有在R上单调递增,若,即时,当或时,,当时,,则有在,上都单调递增,在上单调递减,若,即时,当或时,,当时,,则有在,上都单调递增,在上单调递减,所以,当时,上单调递减,在上单调递增,当时,在,上都单调递增,在上单调递减,当时,在R上单调递增,当时,在,上都单调递增,在上单调递减.【小问2详解】依题意,,,当时,,当时,,,则函数在上单调递增,有,无零点,当时,,,函数在上单调递减,,无零点,当时,,使得,而在上单调递增,当时,,当时,,因此,在上单调递增,在上单调递减,又,若,即时,无零点,若,即时,有一个零点,综上可知,当时,在有1个零点,所以实数a的取值范围.【点睛】思路点睛:涉及含参的函数零点问题,利用导数分类讨论,研究函数的单调性、最值等,结合零点存在性定理,借助数形结合思想分析解决问题.22、(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论