版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省临洮县二中2025届高一上数学期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知定义在R上的函数,(e为自然对数的底数,),则()A.3 B.6C.3e D.与实数m的取值有关2.有三个函数:①,②,③,其中图像是中心对称图形的函数共有().A.0个 B.1个C.2个 D.3个3.直线的倾斜角为()A. B.30°C.60° D.120°4.已知,则直线通过()象限A.第一、二、三 B.第一、二、四C.第一、三、四 D.第二、三、四5.在下列区间中,函数fxA.0,14C.12,6.已知x,y满足,求的最小值为()A.2 B.C.8 D.7.已知三个顶点的坐标分别为,,,则外接圆的标准方程为()A. B.C. D.8.我国南宋时期著名的数学家秦九韶在其著作《数书九章》中独立提出了一种求三角形面积的方法“三斜求积术”,即的面积,其中分别为的内角的对边,若,且,则的面积的最大值为()A. B.C. D.9.已知函数,且,则A.3 B.C.9 D.10.设函数,若是奇函数,则的值是()A.2 B.C.4 D.二、填空题:本大题共6小题,每小题5分,共30分。11.角的终边经过点,且,则________.12.化简________.13.已知扇形周长为4,圆心角为,则扇形面积为__________.14.已知集合,则的元素个数为___________.15.已知函数则的值为_______16.某种候鸟每年都要随季节的变化而进行大规模的迁徙,研究候鸟的专家发现,该种鸟类的飞行速度(单位:m/s)与其耗氧量之间的关系为(其中、是实数).据统计,该种鸟类在耗氧量为80个单位时,其飞行速度为18m/s,则________;若这种候鸟飞行的速度不能低于60m/s,其耗氧量至少要________个单位.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.上海市某地铁项目正在紧张建设中,通车后将给更多市民出行带来便利,已知该线路通车后,地铁的发车时间间隔t(单位:分钟)满足,,经测算,在某一时段,地铁载客量与发车时间间隔t相关,当时地铁可达到满载状态,载客量为1200人,当时,载客量会减少,减少的人数与的平方成正比,且发车时间间隔为2分钟时载客量为560人,记地铁载客量为.(1)求的解析式;(2)若该时段这条线路每分钟的净收益为(元),问当发车时间间隔为多少时,该时段这条线路每分钟的净收益最大?18.已知函数,(1)求最小正周期;(2)求的单调递增区间;(3)当时,求的最大值和最小值19.已知函数.(1)求f(x)的定义域及单调区间;(2)求f(x)的最大值,并求出取得最大值时x的值;(3)设函数,若不等式f(x)≤g(x)在x∈(0,3)上恒成立,求实数a的取值范围.20.已知函数.(1)求的定义域;(2)判断的奇偶性并予以证明;(3)求不等式的解集.21.已知集合,(1)当时,求;(2)若,求的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】可证,从而可得正确的选项.【详解】因为,故,故,故选:B2、C【解析】根据反比例函数的对称性,图象变换,然后结合中心对称图形的定义判断【详解】,显然函数的图象是中心对称图形,对称中心是,而的图形是由的图象向左平行3个单位,再向下平移1个单位得到的,对称中心是,由得,于是不是中心对称图形,,中间是一条线段,它关于点对称,因此有两个中心对称图形故选:C3、C【解析】根据直线的斜率即可得倾斜角.【详解】因为直线的斜率为,所以直线的倾斜角为满足,即故选:C.4、A【解析】根据判断、、的正负号,即可判断直线通过的象限【详解】因为,所以,①若则,,直线通过第一、二、三象限②若则,,直线通过第一、二、三象限【点睛】本题考查直线,作为选择题5、C【解析】利用零点存在定理即可判断.【详解】函数fx=e因为函数y=ex,y=2x-3均为增函数,所以fx又f1=ef12=由零点存在定理可得:fx的零点所在的区间为1故选:C6、C【解析】利用两点间的距离公式结合点到直线的距离公式即可求解.【详解】解:表示点与直线上的点的距离的平方所以的最小值为点到直线的距离的平方所以最小值为:故选:C.7、C【解析】先判断出是直角三角形,直接求出圆心和半径,即可求解.【详解】因为三个顶点的坐标分别为,,,所以,所以,所以是直角三角形,所以的外接圆是以线段为直径的圆,所以圆心坐标为,半径故所求圆的标准方程为故选:C8、A【解析】先根据求出关系,代入面积公式,利用二次函数的知识求解最值.【详解】因为,所以,即;由正弦定理可得,所以;当时,取到最大值.故选:A.9、C【解析】利用函数的奇偶性以及已知条件转化求解即可【详解】函数g(x)=ax3+btanx是奇函数,且,因为函数f(x)=ax3+btanx+6(a,b∈R),且,可得=﹣3,则=﹣g()+6=3+6=9故选C【点睛】本题考查函数的奇偶性的应用,函数值的求法,考查计算能力.已知函数解析式求函数值,可以直接将变量直接代入解析式从而得到函数值,直接代入较为繁琐的题目,可以考虑函数的奇偶性的应用,利用部分具有奇偶性的特点进行求解,就如这个题目.10、D【解析】根据为奇函数,可求得,代入可得答案.【详解】若是奇函数,则,所以,,.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由题意利用任意角的三角函数的定义直接计算【详解】角的终边经过点,且,解得.故答案为:12、【解析】观察到,故可以考虑直接用辅助角公式进行运算.【详解】故答案为:.13、1【解析】利用扇形的弧长公式求半径,再由扇形面积公式求其面积即可.【详解】设扇形的半径为,则,可得,而扇形的弧长为,所以扇形面积为.故答案为:1.14、5【解析】直接求出集合A、B,再求出,即可得到答案.【详解】因为集合,集合,所以,所以的元素个数为5.故答案为:5.15、【解析】首先计算,再求的值.【详解】,所以.故答案为:16、①.6②.10240【解析】由初始值解出的值,然后令,可得出的取值范围,由此得出候鸟在飞行时速度不低于时的最低耗氧量.【详解】由题意,知,解得,所以,要使飞行速度不能低于,则有,即,即,解得,即,所以耗氧量至少要个单位.故答案为:6;10240【点睛】本题考查对数的应用,解题的关键就是要利用题中数据解出函数解析式,利用题意列出不等式进行求解.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)分钟.【解析】(1)时,求出正比例系数k,写出函数式即可得解;(2)求出每一段上的最大值,再比较大小即可得解.【详解】(1)由题意知,(k为常数),因,则,所以;(2)由得,即,①当时,,当且仅当等号成立;②当时,在[10,20]上递减,当时Q取最大值24,由①②可知,当发车时间间隔为分钟时,该时段这条线路每分钟的净收益最大,最大为120元.18、(1)(2),(3)最大值为,最小值为【解析】(1)由周期公式直接可得;(2)利用正弦函数的单调区间解不等式可得;(3)先根据x的范围求出的范围,然后由正弦函数的性质可得.【小问1详解】的最小正周期【小问2详解】由,,得,.所以函数的单调递增区间为,【小问3详解】∵,∴当,即时,当,即时,.19、(1)定义域为(﹣1,3);f(x)的单调增区间为(﹣1,1],f(x)的单调减区间为[1,3);(2)当x=1时,函数f(x)取最大值1;(3)a≥﹣2.【解析】(1)利用对数的真数大于零即可求得定义域,根据复合函数的单调性“同增异减”即可求得单调区间;(2)根据函数的单调性即可求解;(3)将f(x)≤g(x)转化为x2+ax+1≥0在x∈(0,3)上恒成立,即a≥﹣(x+)在x∈(0,3)上恒成立,即即可,结合基本不等式即可求解.【详解】解:(1)令2x+3﹣x2>0,解得:x∈(﹣1,3),即f(x)的定义域为(﹣1,3),令t=2x+3﹣x2,则,∵为增函数,x∈(﹣1,1]时,t=2x+3﹣x2为增函数;x∈[1,3)时,t=2x+3﹣x2为减函数;故f(x)的单调增区间为(﹣1,1];f(x)的单调减区间为[1,3)(2)由(1)知当x=1时,t=2x+3﹣x2取最大值4,此时函数f(x)取最大值1;(3)若不等式f(x)≤g(x)在x∈(0,3)上恒成立,则2x+3﹣x2≤(a+2)x+4在x∈(0,3)上恒成立,即x2+ax+1≥0在x∈(0,3)上恒成立,即a≥﹣(x+)在x∈(0,3)上恒成立,当x∈(0,3)时,x+≥2,则﹣(x+)≤﹣2,故a≥﹣220、(1).(2)见解析;(3)【解析】(1)根据对数函数的定义,列出关于自变量x的不等式组,求出的定义域;(2)由函数奇偶性的定义,判定在定义域上的奇偶性;(3)化简,根据对数函数的单调性以及定义域,求出不等式>1的解集.试题解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 养老院老人家庭沟通制度
- 数码产品租赁合同(2篇)
- 2024年物业设施管理合同3篇
- 2025年平顶山货运驾驶员从业资格证考试题库答案
- 2025年林芝货运从业资格证模拟考试下载
- 2025年怀化经营性道路客货运输驾驶员从业资格考试
- 《催眠治疗》课件
- 2024年教育设施融资租赁担保合同示例2篇
- 2025年东莞a2驾驶证货运从业资格证模拟考试
- 2024年版矿业开发合同
- 替票使用管理规定
- 核心素养视域下小学数学命题的创新策略分析
- 行政复议申请书范本
- 推荐长沙市岳麓区含浦镇总体规划
- GB∕T 12810-2021 实验室玻璃仪器 玻璃量器的容量校准和使用方法
- 有源光器件及无源光器件区别及基础
- 传热学第五版答案
- 制粒机内部结构图ppt课件
- 单位财务活动策划活动方案四篇
- 船舶气囊上岸方案
- 部编版六年级语文上册第七单元集体备课教材分析
评论
0/150
提交评论