专题03分式与二次根式(题型归纳)(原卷版+解析)_第1页
专题03分式与二次根式(题型归纳)(原卷版+解析)_第2页
专题03分式与二次根式(题型归纳)(原卷版+解析)_第3页
专题03分式与二次根式(题型归纳)(原卷版+解析)_第4页
专题03分式与二次根式(题型归纳)(原卷版+解析)_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题03分式与二次根式题型归纳题型归纳题型演练题型演练题型一分式有意义、无意义的条件题型一分式有意义、无意义的条件1.(2021·浙江·温州市第二中学三模)使分式有意义的字母x的取值范围是()A.x≠0 B.x≠3 C.x≠4 D.x≠3且x≠42.(2022·甘肃定西·模拟预测)函数中,自变量x的取值范围是(

)A. B. C. D.3.(2022·江苏淮安·一模)若分式有意义,则x的取值范围是(

)A. B. C. D.4.(2022·贵州遵义·模拟预测)函数的自变量x的取值范围是(

)A. B. C.或 D.且5.(2022·浙江·三模)若要使得分式有意义,则的取值范围为_______.6.(2022·江苏·南通市海门区东洲国际学校模拟预测)当x=_____时,分式无意义.题型二分式的值为零的条件题型二分式的值为零的条件7.(2022·江苏南京·二模)下列代数式的值总不为0的是(

)A. B. C. D.8.(2022·贵州毕节·一模)关于分式,有下列说法,错误的有()个:(1)当x取1时,这个分式有意义,则a≠3;(2)当x=5时,分式的值一定为零;(3)若这个分式的值为零,则a≠﹣5;(4)当x取任何值时,这个分式一定有意义,则二次函数y=x2﹣4x+a与x轴没有交点.A.0 B.1 C.2 D.39.(2022·浙江温州·一模)若分式的值为0,则x的值为(

)A. B. C.0 D.210.(2021·浙江温州·三模)分式的值为0,则x的值是(

)A.﹣3 B.0 C.1 D.311.(2022·浙江丽水·一模)若分式的值为0,则_____.12.(2022·江苏盐城·二模)当x为_______时,分式的值为0.题型三分式的求值题型三分式的求值13.(2022·四川·眉山市东坡区苏洵初级中学模拟预测)下列各式、、、、中,值一定是正数的有(

)A.个 B.个 C.个 D.个14.(2021·浙江温州·三模)若=,则的值是(

)A.3 B. C. D.215.(2022·江苏宿迁·三模)已知两个不等于0的实数、满足,则等于(

)A. B. C.1 D.216.(2021·安徽安庆·一模)已知,则的值为()A.﹣3 B.3 C. D.17.(2022·江苏镇江·二模)已知:a与b互为相反数,且,则______.18.(2022·黑龙江大庆·二模)已知非零实数x,y满足,则__________.题型四分式的值为正或负时未知数的取值范围题型四分式的值为正或负时未知数的取值范围19.若分式的值是负数,则x的取值范围是()A.x> B.x> C.x< D.x<20.下列关于分式的说法,错误的是()A.当x>-2时,分式的值一定为负数B.当x=0时,分式没有意义C.当x<-2时,分式的值一定为正数D.当x=-2时,分式的值为021.已知分式的值是正数,那么x的取值范围是(

)A.x>0 B.x>-4C.x≠0 D.x>-4且x≠022.若分式的值为正数,则需满足的条件是(

)A.为任意实数 B. C. D.23.若分式的值为正数,x的取值范围是__.24.若分式的值为正,则实数的取值范围是__________________.题型五分式的基本性质题型五分式的基本性质25.(2022·河北·一模)如果要使分式的值保持不变,那么分式应(

)A.a扩大2倍,b扩大3倍 B.a,b同时扩大3倍C.a扩大2倍,b缩小3倍 D.a缩小2倍,b缩小3倍26.(2022·山东临沂·二模)下列运算正确的是(

)A. B. C. D.(a﹣)2=a2﹣a-27.(2022·湖南永州·二模)如果分式中的x,y都扩大为原来的2倍,那么所得分式的值(

)A.不变 B.缩小为原来的C.扩大为原来的2倍 D.不确定28.(2022·河北保定·一模)不改变分式的值,将分式中的分子、分母的系数化为整数,其结果为(

)A. B. C. D.29.(2022·湖北襄阳·一模)已知,则分式的值为______.30.(2020·宁夏·银川市第九中学二模)若,则_______.题型六最简分式题型六最简分式31.(2020·河北·模拟预测)下列分式中,属于最简分式的是()A. B. C. D.32.(2022·四川绵阳·二模)下列分式属于最简分式的是(

)A. B. C. D.33.(2021·江西·一模)下列运算正确的是(

)A. B.C. D.34.(2022·广东·九年级专题练习)分式,,,中,最简分式有(

)A.1个 B.2个 C.3个 D.4个35.(2022·江苏连云港·九年级期末)已知,则的值为_____.36.在分式中,最简分式有______.题型七约分与通分题型七约分与通分37.(2022·广西梧州·二模)下列计算正确的是(

)A.5a-3a=2 B.C. D.38.(2022·山西吕梁·一模)解分式方程时,去分母这一步方程两边不能同时乘以(

)A. B. C. D.39.(2022·云南昆明·模拟预测)若,则的值为______.40.(2022·上海·位育中学模拟预测)化简:________.41.(2021·内蒙古呼和浩特·二模)分式的最简公分母是________,=__________42.(2021·江苏·宜兴市实验中学二模)分式和的最简公分母为_____.题型八分式的乘除法题型八分式的乘除法43.(2022·辽宁沈阳·二模)化简:(

)A. B.x C. D.44.(2022·山东滨州·二模)下列运算正确的是(

)A. B.C. D.3a-4a=-a45.(2022·山东·模拟预测)计算的结果是(

)A. B. C. D.46.(2022·湖北武汉·二模)计算:_____.47.(2022·山西晋中·二模)计算:______.48.(2022·甘肃陇南·模拟预测)计算:=________.题型九分式的加减法题型九分式的加减法49.(2022·广东·珠海市文园中学三模)化简的结果是(

)A.1 B. C. D.50.(2022·贵州贵阳·三模)计算的结果是(

)A.2 B.-2 C.1 D.-151.(2021·湖南·长沙市华益中学三模)计算的结果是_____.52.(2022·湖南怀化·模拟预测)计算﹣=_____.53.(2022·陕西·交大附中分校模拟预测)化简:()÷54.(2022·安徽·模拟预测)先化简,再求值:,其中.55.(2022·上海普陀·二模)先化简,再求值:,其中.56.(2022·甘肃嘉峪关·三模)先化简,再求值:,其中a,b满足.题型十零指数幂与负整数指数幂题型十零指数幂与负整数指数幂57.(2022·广东·东莞市光明中学一模)下列实数中等于的是(

)A. B. C. D.58.(2022·上海杨浦·二模)下列各式中,运算结果是分数的是(

)A. B. C. D.59.(2022·黑龙江牡丹江·模拟预测)下列计算正确的是(

)A. B. C. D.60.(2021·重庆市綦江区赶水中学三模)______.61.(2022·重庆·模拟预测)计算=________.题型十一二次根式有意义的条件题型十一二次根式有意义的条件62.(2022·湖南娄底·一模)要使式子有意义,则a的取值范围是()A.a≠0 B.a>﹣2且a≠0 C.a>﹣2或a≠0 D.a≥﹣2且a≠063.(2022·浙江杭州·模拟预测)要使得式子有意义,则的取值范围是(

)A. B. C. D.64.(2022·黑龙江牡丹江·模拟预测)函数中,自变量x的取值范围是(

)A. B. C. D.65.(2022·安徽合肥·二模)若式子在实数范围内有意义,则x的取值范围是___________.66.(2022·贵州黔东南·一模)函数y中自变量x的取值范围是_____.题型十二利用二次根式的性质化简题型十二利用二次根式的性质化简67.(2022·河北·顺平县腰山镇第一初级中学一模)下列各式正确的是()A.=±4 B.=3 C.=﹣8 D.4﹣4=68.(2022·广东·模拟预测)的化简结果为()A.3 B.﹣3 C.±3 D.969.(2022·湖南怀化·模拟预测)下列计算正确的是()A.(2a2)3=6a6 B.a8÷a2=a4C.=2 D.(x﹣y)2=x2﹣y270.(2021·四川乐山·三模)化简后所得的最后结果是______.71.(2022·山西·大同市云州区初级示范中学校二模)化简:_______.题型十三二次根式的乘除题型十三二次根式的乘除72.下列运算正确的是(

)A. B.C. D.73.(2022·河南·平顶山市第十六中学模拟预测)下列计算正确的是(

)A. B. C. D.74.(2022·河北·石家庄市第四十一中学模拟预测)下列等式不成立的是(

)A. B. C. D.75.(2022·广西贺州·二模)下列计算正确的是(

)A. B.C. D.76.(2022·安徽宿州·模拟预测)计算:_______.77.(2022·山东青岛·一模)计算÷3×的结果是___.题型十四最简二次根式题型十四最简二次根式78.(2022·上海虹口·二模)下列二次根式中,属于最简二次根式的是(

)A. B. C. D.79.(2022·上海金山·二模)在下列二次根式中,最简二次根式的是(

)A. B. C. D.80.(2022·湖南·长沙市南雅中学二模)下列二次根式中,属于最简二次根式的是

)A. B. C. D.81.(2022·河南南阳·二模)写出一个实数x,使是最简二次根式,则x可以是______.82.(2022·湖北襄阳·二模)若最简二次根式与是可以合并的二次根式,则a=______.题型十五二次根式的加减题型十五二次根式的加减83.(2022·上海奉贤·二模)的计算结果是(

)A.2 B.3 C. D.84.(2022·青海西宁·一模)下列各式中,正确的是(

)A. B. C. D.85.(2022·黑龙江·哈尔滨市风华中学校三模)计算的结果是______.86.(2022·江苏南京·二模)计算的结果是______.87.(2021·四川泸州·二模)先化简,再求值:()÷,其中x=﹣1.88.(2022·上海松江·二模)计算:题型十六分母有理化题型十六分母有理化89.(2022·安徽·二模)的倒数是(

)A. B. C. D.90.(2022·广西河池·三模)下列选项错误的是(

)A. B. C. D.91.(2022·黑龙江·哈尔滨市萧红中学校模拟预测)计算的结果是____________.92.(2022·黑龙江·哈尔滨工业大学附属中学校模拟预测)化简:______.93.(2022·浙江宁波·一模)计算:(1)(2)题型十七二次根式的化简求值题型十七二次根式的化简求值94.(2021·山东淄博·一模)已知:m=+1,n=﹣1,则=()A.±3 B.﹣3 C.3 D.95.(2021·河南省淮滨县第一中学一模)已知.则xy=(

)A.8 B.9 C.10 D.1196.(2022·广东番禺中学三模)已知x2=2x+15,则代数式=__________.97.(2022·江苏·江阴市敔山湾实验学校一模)设,则代数式x(x+1)(x+2)(x+3)的值为__________.98.(2022·四川广元·一模)先化简,再求值:,其中,.99.(2021·江西赣州·模拟预测)先化简,再求值:a2﹣b(a﹣b)﹣(a﹣b)2,其中a=﹣2﹣,b=﹣2.100.(2021·辽宁锦州·一模)先化简,再求值:,其中.专题03分式与二次根式题型归纳题型归纳题型演练题型演练题型一分式有意义、无意义的条件题型一分式有意义、无意义的条件1.(2021·浙江·温州市第二中学三模)使分式有意义的字母x的取值范围是()A.x≠0 B.x≠3 C.x≠4 D.x≠3且x≠4【答案】C【分析】根据分式有意义的条件即可作出判断.【详解】解:根据题意得x﹣4≠0,则x≠4.故选:C.2.(2022·甘肃定西·模拟预测)函数中,自变量x的取值范围是(

)A. B. C. D.【答案】B【分析】根据分母不能为0求解即可.【详解】解:∵分母不能等于0∴∴故选B.3.(2022·江苏淮安·一模)若分式有意义,则x的取值范围是(

)A. B. C. D.【答案】B【分析】根据分式有意义的条件:分母不为0即可得到.【详解】要分式有意义,则,解得:.故选:B4.(2022·贵州遵义·模拟预测)函数的自变量x的取值范围是(

)A. B. C.或 D.且【答案】D【分析】根据分式有意义的条件和二次根式有意义的条件,列出不等式,即可求解.【详解】根据题意,得:,,解得且,故选:D.5.(2022·浙江·三模)若要使得分式有意义,则的取值范围为_______.【答案】x≠±1【分析】根据分式有意义的条件即可求出答案.【详解】解:由题意可知:|x2-1|≠0,∴x2-1≠0,∴x≠±1,故答案为:x≠±1.6.(2022·江苏·南通市海门区东洲国际学校模拟预测)当x=_____时,分式无意义.【答案】【分析】根据分式无意义的条件:分母为零,列出方程,解方程得到答案.【详解】解:由题意得,2x+5=0,故答案为:题型二分式的值为零的条件题型二分式的值为零的条件7.(2022·江苏南京·二模)下列代数式的值总不为0的是(

)A. B. C. D.【答案】C【分析】根据题目给出的整式和分式,列举x的值即可判断.【详解】解:A.当x=-2时,x+2=0,故本选项不合题意;B.当x=±时,x2-2=0,故本选项不合题意;C.在分式中,因为x+2≠0,所以分式≠0,故本选项符合题意;D.当x=-2时,(x+2)2=0,故本选项不合题意;故选:C.8.(2022·贵州毕节·一模)关于分式,有下列说法,错误的有()个:(1)当x取1时,这个分式有意义,则a≠3;(2)当x=5时,分式的值一定为零;(3)若这个分式的值为零,则a≠﹣5;(4)当x取任何值时,这个分式一定有意义,则二次函数y=x2﹣4x+a与x轴没有交点.A.0 B.1 C.2 D.3【答案】B【分析】根据分式值为零的条件是分子等于零且分母不等于零,分式有意义的条件是分母不等于零进行分析即可.【详解】解:(1)当取1时,,要使分式有意义即,解得,故说法正确;(2)当时,,若,则分式无意义,故说法错误;(3)由题意得,解得,故说法正确;(4)当x取任何值时,分式一定有意义,即,则y=x2﹣4x+a与x轴没有交点,故说法正确;综上所述:错误的说法有1个,故选:B.9.(2022·浙江温州·一模)若分式的值为0,则x的值为(

)A. B. C.0 D.2【答案】D【分析】根据分式的值为零的条件:分子等于0且分母不等于0即可得出答案.【详解】解:∵分式的值为0∴x﹣2=0,x﹣3≠0,∴x=2,故选:D.10.(2021·浙江温州·三模)分式的值为0,则x的值是(

)A.﹣3 B.0 C.1 D.3【答案】A【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【详解】解:∵分式的值为0,∴x+3=0且x﹣1≠0,解得:x=﹣3,故选:A.11.(2022·浙江丽水·一模)若分式的值为0,则_____.【答案】-1【分析】若分式的值为0,则为0而即可.【详解】解:解得故填:-112.(2022·江苏盐城·二模)当x为_______时,分式的值为0.【答案】【分析】根据分式值为0的条件,可知分子为0,分母不为0,即可求解.【详解】解:∵分式的值为0,∴,解得.故答案为:.题型三分式的求值题型三分式的求值13.(2022·四川·眉山市东坡区苏洵初级中学模拟预测)下列各式、、、、中,值一定是正数的有(

)A.个 B.个 C.个 D.个【答案】B【分析】根据有理数的乘方、绝对值的性质进行解答即可.【详解】解:不一定是正数;是非负数,不一定是正数;一定是正数;一定是正数;是非负数,不一定是正数;所以值一定是正数的有个.故选:B14.(2021·浙江温州·三模)若=,则的值是(

)A.3 B. C. D.2【答案】C【分析】根据=得,将代入中即可得出答案.【详解】解:∵=,∴,将代入中,得,故选:C.15.(2022·江苏宿迁·三模)已知两个不等于0的实数、满足,则等于(

)A. B. C.1 D.2【答案】A【分析】先化简式子,再利用配方法变形即可得出结果.【详解】解:∵,∴,∵两个不等于0的实数、满足,∴,故选:A.16.(2021·安徽安庆·一模)已知,则的值为()A.﹣3 B.3 C. D.【答案】B【分析】直接利用已知得出x=2y,进而代入计算得出答案.【详解】解:∵,∴x=2y,∴.故选:B.17.(2022·江苏镇江·二模)已知:a与b互为相反数,且,则______.【答案】【分析】利用a与b互为相反数,,求解再整体代入求值即可.【详解】解:a与b互为相反数,当则当则故答案为:18.(2022·黑龙江大庆·二模)已知非零实数x,y满足,则__________.【答案】-1【分析】将条件式整理可得,代入代数式即可求解.【详解】解:∵,∴,,故答案为:.题型四分式的值为正或负时未知数的取值范围题型四分式的值为正或负时未知数的取值范围19.若分式的值是负数,则x的取值范围是()A.x> B.x> C.x< D.x<【答案】B【分析】根据题意列出不等式即可求出x的取值范围.【详解】解:由题意可知:2﹣3x<0,且x2+1>0恒成立,∴x>,故选:B.20.下列关于分式的说法,错误的是()A.当x>-2时,分式的值一定为负数B.当x=0时,分式没有意义C.当x<-2时,分式的值一定为正数D.当x=-2时,分式的值为0【答案】A【分析】根据“分式的分子分母同号时,分式的值为正数,当分式的分子分母异号时,分式的值为负数”判断A,C选项;根据“分式的分母为0时,分式没有意义”判断B选项;根据“当分式的分母不为0,且分子为0时,分式的值为0”判断D选项.【详解】解:A项:当x=1时,分式的值为正数,故此选项错误,符合题意;B项:当x=0时,分式没有意义,正确,故此选项不合题意;C项:当x<-2时,分式的值一定为正数,正确,故此选项不合题意;D项:当x=-2时,分式的值为0,正确,故此选项不合题意.故选A.21.已知分式的值是正数,那么x的取值范围是(

)A.x>0 B.x>-4C.x≠0 D.x>-4且x≠0【答案】D【分析】若的值是正数,只有在分子分母同号下才能成立,即x+4>0,且x≠0,因而能求出x的取值范围.【详解】解:∵>0,∴x+4>0,x≠0,∴x>−4且x≠0.故选:D.22.若分式的值为正数,则需满足的条件是(

)A.为任意实数 B. C. D.【答案】C【分析】因为分母不可能是负数,所以分子的值是正数就可以了,据此可得解.【详解】∵,∴分式的值为正数时,,解得:.故选:C.23.若分式的值为正数,x的取值范围是__.【答案】或;【分析】根据分式的值为正数可列不等式组,解不等式组可求解x的取值范围.【详解】由题:∵分式的值为正数,∴或解得:或;故填:或.24.若分式的值为正,则实数的取值范围是__________________.【答案】x>0【分析】分式值为正,则分子与分母同号,据此进行讨论即可得.【详解】∵分式的值为正,∴x与x2+2的符号同号,∵x2+2>0,∴x>0,故答案为x>0.题型五分式的基本性质题型五分式的基本性质25.(2022·河北·一模)如果要使分式的值保持不变,那么分式应(

)A.a扩大2倍,b扩大3倍 B.a,b同时扩大3倍C.a扩大2倍,b缩小3倍 D.a缩小2倍,b缩小3倍【答案】B【分析】先根据题意列出算式,再根据分式的基本性质进行化简,最后得出答案即可.【详解】A.a扩大2倍,b扩大3倍,,故该选项不正确,不符合题意;

B.a,b同时扩大3倍,,故该选项正确,符合题意;C.a扩大2倍,b缩小3倍,,故该选项不正确,不符合题意;D.a缩小2倍,b缩小3倍,故该选项不正确,不符合题意;故选B26.(2022·山东临沂·二模)下列运算正确的是(

)A. B. C. D.(a﹣)2=a2﹣a-【答案】C【分析】利用二次根式除法运算、分式的约分、负整数指数幂的性质、完全平方公式计算即可.【详解】解:A、

,故选项A错误;B、不能约分化简,故选项B错误;C、,计算正确,符合题意;D、(a﹣)2=a2﹣a+,故选项D错误,故选C.27.(2022·湖南永州·二模)如果分式中的x,y都扩大为原来的2倍,那么所得分式的值(

)A.不变 B.缩小为原来的C.扩大为原来的2倍 D.不确定【答案】C【分析】直接利用分式的基本性质化简得出答案.【详解】解:把分式中的x和y都扩大为原来的2倍,则原式可变为:=2×,故分式的值扩大为原来的2倍.故选:C.28.(2022·河北保定·一模)不改变分式的值,将分式中的分子、分母的系数化为整数,其结果为(

)A. B. C. D.【答案】A【分析】利用分式的基本性质,分子分母同时扩大相同的倍数即可求解.【详解】解:,故选:A.29.(2022·湖北襄阳·一模)已知,则分式的值为______.【答案】【分析】先根据题意得出x-y=4xy,然后代入所求的式子,进行约分就可求出结果.【详解】∵,∴x-y=4xy,∴原式=,故答案为:.30.(2020·宁夏·银川市第九中学二模)若,则_______.【答案】【分析】首先设恒等式等于某一常数,然后得到x、y、z与这一常数的关系式,将各关系式代入求职【详解】解:x2=y3=z4=k(k≠0),则题型六最简分式题型六最简分式31.(2020·河北·模拟预测)下列分式中,属于最简分式的是()A. B. C. D.【答案】C【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【详解】解:A、原式,不是最简分式,故本选项不符合题意;B、原式,不是最简分式,故本选项不符合题意;C、该式子是最简分式,故本选项符合题意;D、原式,不是最简分式,故本选项不符合题意;故选:C.32.(2022·四川绵阳·二模)下列分式属于最简分式的是(

)A. B. C. D.【答案】C【分析】利用最简分式的定义:分式分子分母没有公因式,判断即可.【详解】A、=,不符合题意;B、原式=-1,不符合题意;C、符合题意;D、=x-3y,不符合题意;故选:C.33.(2021·江西·一模)下列运算正确的是(

)A. B.C. D.【答案】D【分析】根据同类二次根式的定义、合并同类项法则、分式的运算和积的乘方逐一判断即可.【详解】解:A.和不是同类二次根式,不能合并,故本选项错误;B.,故本选项错误;C.,故本选项错误;D.,故本选项正确.故选D.34.(2022·广东·九年级专题练习)分式,,,中,最简分式有(

)A.1个 B.2个 C.3个 D.4个【答案】B【分析】根据最简分式的定义,即分子与分母没有公因式的分式是最简分式,即可求解.【详解】解:,不是最简分式,,不是最简分式,,是最简分式,有2个.故选:B35.(2022·江苏连云港·九年级期末)已知,则的值为_____.【答案】【分析】根据比例性质和分式的基本性质求解即可.【详解】解:设,∴,,∴=,故答案为:.36.在分式中,最简分式有______.【答案】【分析】根据最简分式的意义对每项进行检验判断.【详解】解:由=,得到此分式不是最简分式;由=m﹣n,得到此分式不是最简分式;由=,得到此分式不是最简分式;由=﹣1,得到此分式不是最简分式;而分子分母没有公因式,是最简分式.故答案为:.题型七约分与通分题型七约分与通分37.(2022·广西梧州·二模)下列计算正确的是(

)A.5a-3a=2 B.C. D.【答案】B【分析】根据合并同类项,分式的约分,完全平方公式,有理数的混合运算逐项分析判断即可求解.【详解】解:A.5a-3a=2a,故该选项不正确,不符合题意;

B.,故该选项正确,符合题意;C.,故该选项不正确,不符合题意;

D.,故该选项不正确,不符合题意;故选B38.(2022·山西吕梁·一模)解分式方程时,去分母这一步方程两边不能同时乘以(

)A. B. C. D.【答案】D【分析】利用解分式方程中的去分母求解即可.【详解】解:将转化成,∴A.,能同时乘以,故不符合题意;B.,能同时乘以,故不符合题意;C.,能同时乘以,故不符合题意;D.,不能同时乘以,符合题意;故选:D.39.(2022·云南昆明·模拟预测)若,则的值为______.【答案】【分析】分式约分后,把m=2n代入即可.【详解】,故答案为:.40.(2022·上海·位育中学模拟预测)化简:________.【答案】【分析】对分母进行因式分解后约分即可.【详解】解:.故答案为:.41.(2021·内蒙古呼和浩特·二模)分式的最简公分母是________,=__________【答案】

【分析】先把两个分式分解因式,然后通分,即可得到答案;然后进行计算求值即可.【详解】解:∵,∴,∴,的最简公分母为:∴故答案为:,42.(2021·江苏·宜兴市实验中学二模)分式和的最简公分母为_____.【答案】2(m﹣n)【分析】利用最简公分母的定义求解,分式和的分母分别是2(m﹣n)、(m﹣n),故最简公分母是2(m﹣n)即是本题答案.【详解】解:∵分式和的分母分别是2(m﹣n)、(m﹣n).∴它们的最简公分母是2(m﹣n).故答案为:2(m﹣n).题型八分式的乘除法题型八分式的乘除法43.(2022·辽宁沈阳·二模)化简:(

)A. B.x C. D.【答案】C【分析】先把分母因式分解,再计算,即可求解.【详解】解:故选:C44.(2022·山东滨州·二模)下列运算正确的是(

)A. B.C. D.3a-4a=-a【答案】D【分析】根据多项式乘多项式的法则、单项式除单项式、立方根、合并同类项的法则分别进行计算,即可得出答案.【详解】解:A、应为(a+b)3=a3+3a2b+3ab2+b3,故本选项错误;B、应为,故本选项错误;C、应为,故本选项错误;D、3a-4a=-a,正确,故本选项符合题意;故选:D.45.(2022·山东·模拟预测)计算的结果是(

)A. B. C. D.【答案】B【分析】根据分式的运算法则化简即可求解.【详解】解:.故选:B.46.(2022·湖北武汉·二模)计算:_____.【答案】【分析】把被除式的分子分母分别因式分解,然后除变乘颠倒除式的分子分母进行约分,即可得到答案.【详解】解:==故答案为:.47.(2022·山西晋中·二模)计算:______.【答案】【分析】根据分式的运算法则计算.【详解】解:原式===故答案为.48.(2022·甘肃陇南·模拟预测)计算:=________.【答案】【分析】先将除法转化为乘法运算,再结合平方差公式分解因式,约分化简即可解答.【详解】解:.题型九分式的加减法题型九分式的加减法49.(2022·广东·珠海市文园中学三模)化简的结果是(

)A.1 B. C. D.【答案】D【分析】首先通分,然后利用同分母的分式相加减的运算法则求解即可,注意运算结果需化为最简形式.【详解】解:.故选:D.50.(2022·贵州贵阳·三模)计算的结果是(

)A.2 B.-2 C.1 D.-1【答案】C【分析】根据分式减法运算法则进行运算,化简即可.【详解】解:,故选:C.51.(2021·湖南·长沙市华益中学三模)计算的结果是_____.【答案】【分析】利用异分母分式的加减法法则计算.【详解】原式,故答案为:.52.(2022·湖南怀化·模拟预测)计算﹣=_____.【答案】1【分析】根据同分母分式相加减,分母不变,把分子相加减计算即可.【详解】解:﹣=故答案为:1.53.(2022·陕西·交大附中分校模拟预测)化简:()÷【答案】【分析】利用通分,约分,因式分解等方法化简即可.【详解】()÷=(=.54.(2022·安徽·模拟预测)先化简,再求值:,其中.【答案】,1【分析】原式先通分并利用同分母分式的加法法则计算,再约分即可得到结果,再将字母的值代入求解即可.【详解】原式.当时,原式55.(2022·上海普陀·二模)先化简,再求值:,其中.【答案】,【分析】根据分式的加减乘除法则进行化简,然后代入数值计算即可.【详解】解:原式当时,原式.56.(2022·甘肃嘉峪关·三模)先化简,再求值:,其中a,b满足.【答案】【分析】先利用非负数的性质求得a,b的值,然后代入化简后的代数式求值即可.【详解】∵a,b满足.∴a+1=0,b﹣=0,解得a=﹣1,b=,当a=﹣1,b=时,∴原式.题型十零指数幂与负整数指数幂题型十零指数幂与负整数指数幂57.(2022·广东·东莞市光明中学一模)下列实数中等于的是(

)A. B. C. D.【答案】B【分析】根据零指数幂的运算法则,算术平方根的定义,负整数指数幂的运算法则解答即可.【详解】解:、,故此选项不符合题意;B、,故此选项符合题意;C、,故此选项不符合题意;D、,故此选项不符合题意.故选:B.58.(2022·上海杨浦·二模)下列各式中,运算结果是分数的是(

)A. B. C. D.【答案】A【分析】分别计算出各选项的值,然后再判断即可.【详解】解:A.=,是分数,故该选项符合题意;B.=1,是整数,故该选项不符合题意;C.=2,是整数,故该选项不符合题意;D.=,是无理数,故该选项不符合题意.59.(2022·黑龙江牡丹江·模拟预测)下列计算正确的是(

)A. B. C. D.【答案】B【分析】根据合并同类项法则、同底数幂的乘除法、负整数指数幂、幂的乘方法则逐项判断即可得.【详解】解:A、,则此项错误,不符题意;B、,则此项正确,符合题意;C、,则此项错误,不符题意;D、,则此项错误,不符题意;故选:B.60.(2021·重庆市綦江区赶水中学三模)______.【答案】【分析】根据负整数指数幂和零指数幂即可得出答案.【详解】解:原式.故答案为:.61.(2022·重庆·模拟预测)计算=________.【答案】-2【分析】根据零指数幂、负整数指数幂的计算法则计算即可.【详解】,故答案为:-2.题型十一二次根式有意义的条件题型十一二次根式有意义的条件62.(2022·湖南娄底·一模)要使式子有意义,则a的取值范围是()A.a≠0 B.a>﹣2且a≠0 C.a>﹣2或a≠0 D.a≥﹣2且a≠0【答案】D【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式即可.【详解】解:由题意得,a+2≥0,a≠0,解得,a≥﹣2且a≠0,故选:D.63.(2022·浙江杭州·模拟预测)要使得式子有意义,则的取值范围是(

)A. B. C. D.【答案】B【分析】根据二次根式有意义,被开方数大于等于,列不等式求解.【详解】解:根据题意,得,解得.故选:B.64.(2022·黑龙江牡丹江·模拟预测)函数中,自变量x的取值范围是(

)A. B. C. D.【答案】D【分析】根据二次根式的被开方数的非负性即可得.【详解】解:由二次根式的被开方数的非负性得:,解得,故选:D.65.(2022·安徽合肥·二模)若式子在实数范围内有意义,则x的取值范围是___________.【答案】【分析】根据二次根式(a≥0)进行解答即可.【详解】解:由题意得:2-x≥0.解得:,故答案为:x≤2.66.(2022·贵州黔东南·一模)函数y中自变量x的取值范围是_____.【答案】x≤2且x≠1【分析】根据二次根式的被开方数的取值大于等于零,以及分式的分母不等于零列式计算可得.【详解】解:由题意得,2﹣x≥0且x﹣1≠0,解得x≤2且x≠1.故答案为:x≤2且x≠1.题型十二利用二次根式的性质化简题型十二利用二次根式的性质化简67.(2022·河北·顺平县腰山镇第一初级中学一模)下列各式正确的是()A.=±4 B.=3 C.=﹣8 D.4﹣4=【答案】B【分析】根据二次根式的性质、二次根式的加减法分别化简计算并判断.【详解】解:A、=4,故该项不正确;B、=3,故该项正确;C、没有意义,故该项不正确;D、4-4=4-4,故该项不正确;故选:B.68.(2022·广东·模拟预测)的化简结果为()A.3 B.﹣3 C.±3 D.9【答案】A【分析】根据二次根式性质直接求解即可.【详解】解:,故选:A.69.(2022·湖南怀化·模拟预测)下列计算正确的是()A.(2a2)3=6a6 B.a8÷a2=a4C.=2 D.(x﹣y)2=x2﹣y2【答案】C【分析】根据积的乘方、同底数幂的除法、二次根式的化简、完全平方公式求解即可;【详解】解:A.(2a2)3=8a6≠6a6,故错误;B.a8÷a2=a6≠a4,故错误;C.=2,故正确;D.(x﹣y)2=x2﹣2xy+y2≠x2﹣y2,故错误;故选:C.70.(2021·四川乐山·三模)化简后所得的最后结果是______.【答案】【分析】根据二次根式的性质化简即可.【详解】解:.故答案为:.71.(2022·山西·大同市云州区初级示范中学校二模)化简:_______.【答案】【分析】现将带分数化为假分数,在进行分母有理化即可得出结果.【详解】解:原式故答案为:.题型十三二次根式的乘除题型十三二次根式的乘除72.下列运算正确的是(

)A. B.C. D.【答案】D【分析】直接利用幂的运算,二次根式的加法运算和乘法运算逐一计算即可.【详解】A、,故选项A错误;

B、,故选项B错误;

C、,故选项C错误;

D、,故选项D正确;故选:D.73.(2022·河南·平顶山市第十六中学模拟预测)下列计算正确的是(

)A. B. C. D.【答案】A【分析】由二次根式的乘法、单项式乘以单项式、合并同类项,分别进行判断,即可得到答案【详解】解:A、,所以A选项符合题意;B、原式,所以B选项不符合题意;C、与不能合并,所以C选项不符合题意;D、,所以D选项不符合题意.故选:D.74.(2022·河北·石家庄市第四十一中学模拟预测)下列等式不成立的是(

)A. B. C. D.【答案】C【分析】根据二次根式的除法法则和二次根式的性质判断即可.【详解】解:A、,等式成立,不符合题意;B、,等式成立,不符合题意;C、,原等式不成立,符合题意;D、,等式成立,不符合题意;故选:C.75.(2022·广西贺州·二模)下列计算正确的是(

)A. B.C. D.【答案】C【分析】直接利用二次根式的加、减、乘、除运算逐项计算即可求解.【详解】A、不能合并在一起,故选项A错误;B、中,与不是同类二次根式,不能合并在一起,故选项B错误;C、,计算正确;D、,故选项D错误,故选C76.(2022·安徽宿州·模拟预测)计算:_______.【答案】2【分析】先化简各项,再相减即可.【详解】解:,故答案为:2.77.(2022·山东青岛·一模)计算÷3×的结果是___.【答案】1【分析】按照二次根式乘除运算法则和运算顺序进行计算即可.【详解】解:原式====1.故答案为:1.题型十四最简二次根式题型十四最简二次根式78.(2022·上海虹口·二模)下列二次根式中,属于最简二次根式的是(

)A. B. C. D.【答案】C【分析】先将各选项化简,再根据最简二次根式的概念进行判断即可.【详解】A.,不是最简二次根式,不符合题意;B.,不是最简二次根式,不符合题意;C.是最简二次根式,符合题意;D.,不是最简二次根式,不符合题意;故选:C.79.(2022·上海金山·二模)在下列二次根式中,最简二次根式的是(

)A. B. C. D.【答案】C【详解】解:A、,分母中含有分式,不是最简二次根式,不符合题意;B、,被开方数中含有可开方的因数,不是最简二次根式,不符合题意;C、,被开方数中没有可开方的因数且分母中没有分式,是最简二次根式,符合题意;D、,被开方数中含有可开方的因数,不是最简二次根式,不符合题意.故答案选C.80.(2022·湖南·长沙市南雅中学二模)下列二次根式中,属于最简二次根式的是

)A. B. C. D.【答案】B【分析】根据最简二次根式的定义依次判断即可.【详解】选项A,,不是最简二次根式;选项B,是最简二次根式;选项C,,不是最简二次根式;选项D,,不是最简二次根式.故选:B.81.(2022·河南南阳·二模)写出一个实数x,使是最简二次根式,则x可以是______.【答案】5(答案不唯一)【分析】本题主要考查了最简二次根式的定义.【详解】解:时,,是最简二次根式,∴x的值可以是5.故答案为:5.(答案不唯一)82.(2022·湖北襄阳·二模)若最简二次根式与是可以合并的二次根式,则a=______.【答案】1【分析】根据同类二次根式的定义计算求值即可;【详解】解:∵=2,根据题意得:a+1=2,解得a=1,故答案为:1.题型十五二次根式的加减题型十五二次根式的加减83.(2022·上海奉贤·二模)的计算结果是(

)A.2 B.3 C. D.【答案】C【分析】根据二次根式的减法法则可进行求解.【详解】解:原式=;故选:C.84.(2022·青海西宁·一模)下列各式中,正确的是(

)A. B. C. D.【答案】D【分析】利用二次根式的性质和加减乘除运算法则依次判断即可.【详解】A:,故此选项错误;B:,故此选项错误;C:不能再运算,故此选项错误;D:,故此选

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论