




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年人教版七年级数学下册精选压轴题培优卷专题01相交线与平行线姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共9小题,满分18分,每小题2分)1.(2分)(2022秋•丹东期末)若将一副三角板按如图所示的方式放置,则下列结论正确的是()A.∠1=∠2 B.如果∠2=30°,则有AC∥DE C.如果∠2=45°,则有∠4=∠D D.如果∠2=50°,则有BC∥AE2.(2分)(2022春•宜州区期中)如图,AB∥CD,BF交CD于点E,AE⊥BF,∠CEF=35°,则∠A是()A.35° B.45° C.55° D.65°3.(2分)(2022春•江汉区校级月考)如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行 B.内错角相等,两直线平行 C.同旁内角互补,两直线平行 D.对顶角相等,两直线平行4.(2分)(2022春•新罗区期中)如图,将一个宽度相等的纸条沿AB折叠一下,若∠1=140°,则∠2的值为()A.100° B.110° C.120° D.130°5.(2分)(2022春•温江区期末)将一副直角三角板如图放置,已知∠B=60°,∠F=45°,AB∥EF,则∠CGD=()A.45° B.60° C.75° D.105°6.(2分)(2022春•牡丹江期中)如图,AB∥CD,F为AB上一点,FD∥EH,且FE平分∠AFG,过点F作FG⊥EH于点G,且∠AFG=2∠D,则下列结论:①∠D=30°;②2∠D+∠EHC=90°;③FD平分∠HFB;④FH平分∠GFD.其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个7.(2分)(2019秋•淮阴区期末)如图,将长方形ABCD沿线段EF折叠到EB'C'F的位置,若∠EFC'=100°,则∠DFC'的度数为()A.20° B.30° C.40° D.50°8.(2分)(2021春•奉化区校级期末)如图,AD∥BC,∠D=∠ABC,点E是边DC上一点,连接AE交BC的延长线于点H.点F是边AB上一点.使得∠FBE=∠FEB,作∠FEH的角平分线EG交BH于点G,若∠DEH=100°,则∠BEG的度数为()A.30° B.40° C.50° D.60°9.(2分)(2022春•大观区校级期末)如图,AB∥CD,P为AB上方一点,H、G分别为AB、CD上的点,∠PHB、∠PGD的角平分线交于点E,∠PGC的角平分线与EH的延长线交于点F,下列结论:①EG⊥FG;②∠P+∠PHB=∠PGD;③∠P=2∠E;④若∠AHP﹣∠PGC=∠F,则∠F=60°.其中正确的结论有()个.A.1 B.2 C.3 D.4评卷人得分二.填空题(共10小题,满分20分,每小题2分)10.(2分)(2022秋•宁强县期末)将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=20°,则∠DBC为度.11.(2分)(2022春•新乐市校级月考)如图,直线EF,CD相交于点O,OA⊥OB,垂足为O,且OC平分∠AOF.(1)若∠AOE=40°,则∠DOE的度数为;(2)∠AOE与∠BOD的数量关系为.12.(2分)(2022春•环翠区期末)如图,AB∥EF,∠C=90°,则α、β和γ的关系是.13.(2分)(2022春•绍兴期末)如图,已知直线AB∥CD,点M、N分别在直线AB、CD上,点E为AB、CD之间一点,且点E在MN的右侧,∠MEN=128°.若∠BME与∠DNE的平分线相交于点E1,∠BME1与∠DNE1的平分线相交于点E2,∠BME2与∠DNE2的平分线相交于点E3,……,依此类推,若∠MEnN=8°,则n的值是.14.(2分)(2022春•镜湖区校级期末)有长方形纸片,E,F分别是AD,BC上一点∠DEF=x(0°<x<45°),将纸片沿EF折叠成图1,再沿GF折叠成图2.(1)如图1,当x=32°时,∠FGD′=度;(2)如图2,作∠MGF的平分线GP交直线EF于点P,则∠GPE=.(用x的式子表示).15.(2分)(2022春•诸暨市期末)从汽车灯的点O处发出的一束光线经灯的反光罩反射后沿CO方向平行射出,已知入射光线OA的反射光线为AB,∠OAB=∠COA=72°.在如图中所示的截面内,若入射光线OD经反光罩反射后沿DE射出,且∠ODE=27°.则∠AOD的度数是.16.(2分)(2022春•九龙坡区校级期中)如图,将长方形ABCD沿EF翻折,再沿ED翻折,若∠FEA″=105°,则∠CFE=度.17.(2分)(2022春•东湖区校级月考)如图,直线EF上有两点A、C,分别引两条射线AB、CD,∠DCF=60°,∠EAB=70°,射线AB、CD分别绕A点,C点以1度/秒和3度/秒的速度同时顺时针转动,在射线CD转动一周的时间内,使得CD与AB平行所有满足条件的时间=.18.(2分)(2022春•沙坪坝区校级月考)已知如图,AD∥BC,BD∥AE,DE平分∠ADB,且ED⊥CD,若∠AED+∠BAD=127.5°,则∠BCD﹣∠EAB=度.19.(2分)(2022春•渭滨区期末)把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若∠EFG=49°,则∠2﹣∠1=.评卷人得分三.解答题(共9小题,满分62分)20.(6分)(2022秋•丹东期末)如图,已知∠1=∠BDC,∠2+∠3=180°.(1)求证:AD∥CE;(2)若DA平分∠BDC,DA⊥FE于点A,∠FAB=55°,求∠ABD的度数.21.(6分)(2019春•本溪期中)已知如图AB∥CD,①由图(1)易得∠B、∠BED、∠D的关系(直接写结论).由图(2)易得∠B、∠BED、∠D的关系(直接写结论).②从图(1)图(2)任选一个图形说明①中其中一个结论成立的理由.[延伸拓展]利用上面(1)(2)得出的结论完成下题③已知,AB∥CD,∠ABE与∠CDE两个角的角平分线相交于点F.若∠E=60°,求∠BFD的度数.22.(6分)(2022•衡东县校级开学)如图1,AB∥CD,∠PAB=124°,∠PCD=120°,求∠APC的大小.小明的解题思路:过点P作PM∥AB,通过平行线的性质来求∠APC.(1)按小明的解题思路,可求得∠APC的大小为度;(2)如图2,已知直线m∥n,直线a,b分别与直线m,n相交于点B、D和点A、C.点P在线段BD上运动(不与B、D两点重合),记∠PAB=α,∠PCD=β,问∠APC与α,β之间有何数量关系?判断并说明理由;(3)在(2)的条件下,若把“线段BD”改为“直线BD”,请求出∠APC与α,β之间的数量关系.23.(6分)(2022春•鹿邑县月考)如图,已知AB∥CD,∠ABE与∠CDE的平分线相交于点F.(1)如图1,若∠E=70°,求∠BFD的度数;(2)如图2,若∠ABM=∠ABF,∠CDM=∠CDF,写出∠M和∠E之间的数量关系,并证明你的结论.24.(6分)(2022秋•绿园区期末)【问题情景】如图1,若AB∥CD,∠AEP=45°,∠PFD=120°.过点P作PM∥AB,则∠EPF=;【问题迁移】如图2,AB∥CD,点P在AB的上方,点E,F分别在AB,CD上,连接PE,PF,过P点作PN∥AB,问∠PEA,∠PFC,∠EPF之间的数量关系是,请在下方说明理由;【联想拓展】如图3所示,在(2)的条件下,已知∠EPF=36°,∠PFA的平分线和∠PFC的平分线交于点G,过点G作GH∥AB,则∠EGF=.25.(8分)(2022春•富县期末)如图,AD∥BC,∠BAD的平分线交BC于点G,∠BCD=90°.(1)求证:∠BAG=∠BGA;(2)如图②,线段AG上有一点P,满足∠ABP=3∠PBG,过点C作CH∥AG.若在直线AG上有一点M,使∠PBM=∠DCH,求的值.26.(8分)(2022春•武汉期末)已知,点E,F分别在直线AB,CD上,点P在直线AB上方.问题探究:(1)如图1,∠CFP+∠EPF=∠AEP,证明:AB∥CD;问题拓展:(2)如图2,AB∥CD,∠AEP的角平分线EK所在的直线和∠DFP的角平分线FR所在的直线交于Q点,请写出∠EPF和∠EQF之间的数量关系,并证明.问题迁移:(3)如图3,AB∥CD,直线MN分别交AB,CD于点M,N,若点H在线段MN上,且∠MEF=α,请直接写出∠HFE,∠MEH和∠EHF之间满足的数量关系(用含α的式子表示).27.(8分)(2022春•建邺区校级期末)【探究结论】(1)如图1,AB∥CD,E为形内一点,连结AE、CE得到∠AEC,则∠AEC、∠A、∠C的关系是(直接写出结论,不需要证明):【探究应用】利用(1)中结论解决下面问题:(2)如图2,AB∥CD,直线MN分别交AB、CD于点E、F,EG1和EG2为∠BEF内满足∠1=∠2的两条线,分别与∠EFD的平分线交于点G1和G2,求证:∠FG1E+∠G2=180°.(3)如图3,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=3∠CEF,若8°<∠BAE<20°,∠C的度数为整数,则∠C的度数为.28.(8分)(2022春•颍州区期末)(1)问题背景:如图1,已知AB∥CD,点P的位置如图所示,连结PA,PC,试探究∠APC与∠A、∠C之间的数量关系,并说明理由.解:(1)∠APC与∠A、∠C之间的数量关系是:∠APC=∠A+∠C.理由:如图1,过点P作PE∥AB,∴∠APE=∠A,∵AB∥CD,∴PE∥CD,∴∠CPE=∠C,∴∠APE+∠CPE=∠A+∠C,∴∠APC=∠A+∠C.总结:本题通过添加适当的辅助线,从而利用平行线的性质,使问题得以解决.(2)类比探究:如图2,已知AB∥CD,线段AD与BC相交于点E,点B在点A右侧.若∠ABC=40°,∠ADC=80°,求∠AEC的度数.(3)拓展延伸:如图3,若∠ABC与∠ADC的角平分线相交于点F,请直接写出∠BFD与∠AEC之间的数量关系2022-2023学年人教版七年级数学下册精选压轴题培优卷专题01相交线与平行线一.选择题(共9小题,满分18分,每小题2分)1.(2分)(2022秋•丹东期末)若将一副三角板按如图所示的方式放置,则下列结论正确的是()A.∠1=∠2 B.如果∠2=30°,则有AC∥DE C.如果∠2=45°,则有∠4=∠D D.如果∠2=50°,则有BC∥AE解:∵∠CAB=∠DAE=90°,∴∠1=∠3,故A错误.∵∠2=30°,∴∠1=∠3=60°∴∠CAE=90°+60°=150°,∴∠E+∠CAE=180°,∴AC∥DE,故B正确,∵∠2=45°,∴∠1=∠2=∠3=45°,∵∠E+∠3=∠B+∠4,∴∠4=30°,∵∠D=60°,∴∠4≠∠D,故C错误,∵∠2=50°,∴∠3=40°,∴∠B≠∠3,∴BC不平行AE,故D错误.故选:B.2.(2分)(2022春•宜州区期中)如图,AB∥CD,BF交CD于点E,AE⊥BF,∠CEF=35°,则∠A是()A.35° B.45° C.55° D.65°解:∵AE⊥BF,∴∠AEF=90°,∴∠AEC=90°﹣∠CEF=90°﹣35°=55°,∵AB∥CD,∴∠A=∠AEC=55°.故选:C.3.(2分)(2022春•江汉区校级月考)如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行 B.内错角相等,两直线平行 C.同旁内角互补,两直线平行 D.对顶角相等,两直线平行解:如图,给出了过直线外一点作已知直线的平行线的方法,其依据是同位角相等,两直线平行.故选:A.4.(2分)(2022春•新罗区期中)如图,将一个宽度相等的纸条沿AB折叠一下,若∠1=140°,则∠2的值为()A.100° B.110° C.120° D.130°解:如图:∵宽度相等的纸条沿AB折叠一下,∴纸条两边互相平行,∴2∠3=∠1,∠2+∠3=180°,∵∠1=140°,∴∠3=∠1=70°,∴∠2=180°﹣∠3=110°,故选:B.5.(2分)(2022春•温江区期末)将一副直角三角板如图放置,已知∠B=60°,∠F=45°,AB∥EF,则∠CGD=()A.45° B.60° C.75° D.105°解:∵∠B=60°,∴∠A=30°,∵EF∥BC,∴∠FDA=∠F=45°,∴∠CGD=∠A+∠FDA=45°+30°=75°.故选:C.6.(2分)(2022春•牡丹江期中)如图,AB∥CD,F为AB上一点,FD∥EH,且FE平分∠AFG,过点F作FG⊥EH于点G,且∠AFG=2∠D,则下列结论:①∠D=30°;②2∠D+∠EHC=90°;③FD平分∠HFB;④FH平分∠GFD.其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个解:延长FG,交CH于I.∵AB∥CD,∴∠BFD=∠D,∠AFI=∠FIH,∵FD∥EH,∴∠EHC=∠D,∵FE平分∠AFG,∴∠FIH=2∠AFE=2∠EHC,∴3∠EHC=90°,∴∠EHC=30°,∴∠D=30°,∴2∠D+∠EHC=2×30°+30°=90°,∴①∠D=30°;②2∠D+∠EHC=90°正确,∵FE平分∠AFG,∴∠AFI=30°×2=60°,∵∠BFD=30°,∴∠GFD=90°,∴∠GFH+∠HFD=90°,可见,∠HFD的值未必为30°,∠GFH未必为45°,只要和为90°即可,∴③FD平分∠HFB,④FH平分∠GFD不一定正确.故选B.7.(2分)(2019秋•淮阴区期末)如图,将长方形ABCD沿线段EF折叠到EB'C'F的位置,若∠EFC'=100°,则∠DFC'的度数为()A.20° B.30° C.40° D.50°解:由翻折知,∠EFC=∠EFC'=100°,∴∠EFC+∠EFC'=200°,∴∠DFC'=∠EFC+∠EFC'﹣180°=200°﹣180°=20°,故选:A.8.(2分)(2021春•奉化区校级期末)如图,AD∥BC,∠D=∠ABC,点E是边DC上一点,连接AE交BC的延长线于点H.点F是边AB上一点.使得∠FBE=∠FEB,作∠FEH的角平分线EG交BH于点G,若∠DEH=100°,则∠BEG的度数为()A.30° B.40° C.50° D.60°解:设FBE=∠FEB=α,则∠AFE=2α,∠FEH的角平分线为EG,设∠GEH=∠GEF=β,∵AD∥BC,∴∠ABC+∠BAD=180°,而∠D=∠ABC,∴∠D+∠BAD=180°,∴AB∥CD,∠DEH=100°,则∠CEH=∠FAE=80°,∠AEF=180°﹣∠FEG﹣∠HEG=180°﹣2β,在△AEF中,80°+2α+180﹣2β=180°故β﹣α=40°,而∠BEG=∠FEG﹣∠FEB=β﹣α=40°,故选:B.9.(2分)(2022春•大观区校级期末)如图,AB∥CD,P为AB上方一点,H、G分别为AB、CD上的点,∠PHB、∠PGD的角平分线交于点E,∠PGC的角平分线与EH的延长线交于点F,下列结论:①EG⊥FG;②∠P+∠PHB=∠PGD;③∠P=2∠E;④若∠AHP﹣∠PGC=∠F,则∠F=60°.其中正确的结论有()个.A.1 B.2 C.3 D.4解:∵GF平分∠PGC,GE平分∠PGD,∴∠PGF=∠PGC,∠PGE=∠PGD,∴∠EGF=∠PGF+∠PGE=(∠PGC+∠PGD)=,即EG⊥FG,故①正确;设PG与AB交于M,GE于AB交于N,∵AB∥CD,∴∠PMB=∠PGD,∵∠PMB=∠P+∠PHM,∴∠P+∠PHB=∠PGD,故②正确;∵HE平分∠BHP,GE平分∠PGD,∴∠PHB=2∠EHB,∠PGD=2∠EGD,∵AB∥CD,∴∠PMB=∠PGD,∠ENB=∠EGD,∴∠PMB=2∠ENB,∵∠PMB=∠P+∠PHB,∠ENB=∠E+∠EHB,∴∠P=2∠E,故③正确;∵∠AHP﹣∠PMC=∠P,∠PMH=∠PGC,∠AHP﹣∠PGC=∠F,∴∠P=∠F,∵∠FGE=90°,∴∠E+∠F=90°,∴∠E+∠P=90°,∵∠P=2∠E,∴3∠E=90,解得∠E=30°,∴∠F=∠P=60°,故④正确.综上,正确答案有4个,故选:D.二.填空题(共10小题,满分20分,每小题2分)10.(2分)(2022秋•宁强县期末)将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=20°,则∠DBC为70度.解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°,又∵∠ABE=20°,∴∠DBC=70°.故答案为:70.11.(2分)(2022春•新乐市校级月考)如图,直线EF,CD相交于点O,OA⊥OB,垂足为O,且OC平分∠AOF.(1)若∠AOE=40°,则∠DOE的度数为70°;(2)∠AOE与∠BOD的数量关系为∠AOE=2∠BOD.解:(1)∵OA⊥OB,∴∠AOB=90°,∵∠AOF+∠AOE=180°,∠AOE=40°,∴∠AOF=140°,∵OC平分∠AOF,∴∠AOC=∠COF=70°,∵∠BOD+∠AOB+∠AOC=180°,∴∠DOE=∠COF=70°.故答案为:70°;(2)∵∠AOE+∠AOF=180°,∠AOC=∠COF,∴∠AOC=(180°﹣∠AOE)=90°﹣∠AOE,∵∠BOD+∠AOB+∠AOC=180°,∴∠BOD=180°﹣90°﹣∠AOC=90°﹣(90°﹣∠AOE)=﹣∠AOE,∴∠AOE=2∠BOD.故答案为:∠AOE=2∠BOD.12.(2分)(2022春•环翠区期末)如图,AB∥EF,∠C=90°,则α、β和γ的关系是α+β﹣γ=90°.解:过点C作CM∥AB,过点D作DN∥EF,则:∠BCM=∠ABC=α,∠EDN=∠DEF=γ,∵AB∥EF,∴CM∥DN,∴∠DCM=∠CDN,∵∠BCM+∠DCM=90°,∠CDN+∠EDN=β,∴α+(β﹣γ)=90°,∴α+β﹣γ=90°.故答案为:α+β﹣γ=90°.13.(2分)(2022春•绍兴期末)如图,已知直线AB∥CD,点M、N分别在直线AB、CD上,点E为AB、CD之间一点,且点E在MN的右侧,∠MEN=128°.若∠BME与∠DNE的平分线相交于点E1,∠BME1与∠DNE1的平分线相交于点E2,∠BME2与∠DNE2的平分线相交于点E3,……,依此类推,若∠MEnN=8°,则n的值是4.解:过E作EH∥AB,E1G∥AB,∵AB∥CD,∴EH∥CD,E1G∥CD,∴∠BME=∠MEH,∠DNE=∠NEH,∴∠BME+∠DNE=∠MEH+∠NEH=∠MEN=128°,同理∠ME1N=∠BME1+∠DNE1,∵ME1平分∠BME,NE1平分∠DNE,∴∠BME1+∠DNE1=(∠BME+∠DNE)=∠MEN,∴∠ME1N=∠MEN,同理,∠ME2N=∠ME1N=∠MEN,∠ME3N=∠ME2N=∠MEN,•••,∴∠MEnN=∠MEn﹣1N=∠MEN,若∠MEnN=8°,则∠MEN=×128°=8°,∴n=4.故答案为:4.14.(2分)(2022春•镜湖区校级期末)有长方形纸片,E,F分别是AD,BC上一点∠DEF=x(0°<x<45°),将纸片沿EF折叠成图1,再沿GF折叠成图2.(1)如图1,当x=32°时,∠FGD′=64度;(2)如图2,作∠MGF的平分线GP交直线EF于点P,则∠GPE=2x.(用x的式子表示).解:(1)由折叠可得∠GEF=∠DEF=32°,∵长方形的对边是平行的,∴∠DEG=∠FGD′,∴∠DEG=∠GFE+∠DEF=64°,∴∠FGD′=∠EGD=64°,∴当x=32°时,∠GFD′的度数是64°.故答案为:64;(2)∠GPE=2∠GEP=2x.由折叠可得∠GEF=∠DEF,∵长方形的对边是平行的,∴设∠BFE=∠DEF=x,∴∠EGB=∠BFE+∠D′EF=2x,∴∠FGD′=∠EGB=2x,由折叠可得∠MGF=∠D′GF=2x,∵GP平分∠MGF,∴∠PGF=x,∴∠GPE=∠PGF+∠BFE=2x,∴∠GPE=2∠GEP=2x.故答案为:∠GPE=2x.15.(2分)(2022春•诸暨市期末)从汽车灯的点O处发出的一束光线经灯的反光罩反射后沿CO方向平行射出,已知入射光线OA的反射光线为AB,∠OAB=∠COA=72°.在如图中所示的截面内,若入射光线OD经反光罩反射后沿DE射出,且∠ODE=27°.则∠AOD的度数是45°或99°.解:∵DE∥CF,∴∠COD=∠ODE.(两直线平行,内错角相等)∵∠ODE=27°,∴∠COD=27°.在图1的情况下,∠AOD=∠COA﹣∠COD=72°﹣27°=45°.在图2的情况下,∠AOD=∠COA+∠COD=72°+27°=99°.∴∠AOD的度数为45°或99°.故答案为:45°或99°.16.(2分)(2022春•九龙坡区校级期中)如图,将长方形ABCD沿EF翻折,再沿ED翻折,若∠FEA″=105°,则∠CFE=155度.解:由四边形ABFE沿EF折叠得四边形A′B′FE,∴∠A′EF=∠AEF.∵∠A′EF=∠A′ED+∠DEF,∠AEF=180°﹣∠DEF.∴∠A′ED+∠DEF=180°﹣∠DEF.由四边形A′B′ME沿AD折叠得四边形A″B″ME,∴∠A′ED=∠A″ED.∵∠A″ED=∠A″EF+∠DEF=105°+∠DEF,∴∠A′ED=105°+∠DEF.∴105°+∠DEF+∠DEF=180°﹣∠DEF.∴∠DEF=25°.∵AD∥BC,∴∠DEF=∠EFB=25°.∴∠CFE=180°﹣∠EFB=180°﹣25°=155°.故答案为:155.17.(2分)(2022春•东湖区校级月考)如图,直线EF上有两点A、C,分别引两条射线AB、CD,∠DCF=60°,∠EAB=70°,射线AB、CD分别绕A点,C点以1度/秒和3度/秒的速度同时顺时针转动,在射线CD转动一周的时间内,使得CD与AB平行所有满足条件的时间=5秒或95秒.解:∵∠EAB=70°,∠DCF=60°,∴∠BAC=110°,∠ACD=120°,分三种情况:如图①,AB与CD在EF的两侧时,∠ACD=120°﹣(3t)°,∠BAC=110°﹣t°,要使AB∥CD,则∠ACD=∠BAC,即120°﹣(3t)°=110°﹣t°,解得t=5;②CD旋转到与AB都在EF的右侧时,∠DCF=360°﹣(3t)°﹣60°=300°﹣(3t)°,∠BAC=110°﹣t°,要使AB∥CD,则∠DCF=∠BAC,即300°﹣(3t)°=110°﹣t°,解得t=95;③CD旋转到与AB都在EF的左侧时,∠DCF=(3t)°﹣(180°﹣60°+180°)=(3t)°﹣300°,∠BAC=t°﹣110°,要使AB∥CD,则∠DCF=∠BAC,即(3t)°﹣300°=t°﹣110°,解得t=95,∴此情况不存在.综上所述,当时间t的值为5秒或95秒时,CD与AB平行.故答案为:5秒或95秒.18.(2分)(2022春•沙坪坝区校级月考)已知如图,AD∥BC,BD∥AE,DE平分∠ADB,且ED⊥CD,若∠AED+∠BAD=127.5°,则∠BCD﹣∠EAB=37.5度.解:设∠ADE=x,∵DE平分∠ADB,∴∠EDB=∠ADE=x,又ED⊥CD,∴∠EDC=90°,∴∠BDC=90°﹣x,∵AD∥BC,∴∠DBC=∠ADB=2x,∠BCD=180°﹣(90°﹣x+2x)=90°﹣x,∵BD∥AE,∴∠AED=∠EDB=x,∵∠AED+∠BAD=127.5°,∴∠BAD=127.5°﹣x,∠EAB=180°﹣(127.5°﹣x+2x)=52.5°﹣x,∴∠BCD﹣∠EAB=(90°﹣x)﹣(52.5°﹣x)=37.5°.故答案为:37.5.19.(2分)(2022春•渭滨区期末)把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若∠EFG=49°,则∠2﹣∠1=16°.解:∵AD∥BC,∴∠2=∠DEG,∠EFG=∠DEF=49°,∵长方形纸片ABCD沿EF折叠后ED与BC的交点为G,∴∠DEF=∠GEF=49°,∴∠2=2×49°=98°,∴∠1=180°﹣98°=82°,∴∠2﹣∠1=98°﹣82°=16°.故答案为16°.三.解答题(共9小题,满分62分)20.(6分)(2022秋•丹东期末)如图,已知∠1=∠BDC,∠2+∠3=180°.(1)求证:AD∥CE;(2)若DA平分∠BDC,DA⊥FE于点A,∠FAB=55°,求∠ABD的度数.(1)证明:∵∠1=∠BDC,∴AB∥CD,∴∠2=∠ADC,∵∠2+∠3=180°,∴∠ADC+∠3=180°,∴AD∥CE;(2)解:∵CE⊥AE于E,∴∠CEF=90°,由(1)知AD∥CE,∴∠DAF=∠CEF=90°,∴∠ADC=∠2=∠DAF﹣∠FAB,∵∠FAB=55°,∴∠ADC=35°,∵DA平分∠BDC,∠1=∠BDC,∴∠1=∠BDC=2∠ADC=70°∴∠ABD=180°﹣70°=110°.21.(6分)(2019春•本溪期中)已知如图AB∥CD,①由图(1)易得∠B、∠BED、∠D的关系∠BED=∠B+∠D(直接写结论).由图(2)易得∠B、∠BED、∠D的关系∠BED=360°﹣(∠B+∠D)(直接写结论).②从图(1)图(2)任选一个图形说明①中其中一个结论成立的理由.[延伸拓展]利用上面(1)(2)得出的结论完成下题③已知,AB∥CD,∠ABE与∠CDE两个角的角平分线相交于点F.若∠E=60°,求∠BFD的度数.解:①由图(1)易得∠B、∠BED、∠D的关系∠BED=∠B+∠D.由图(2)易得∠B、∠BED、∠D的关系∠BED=360°﹣(∠B+∠D).故答案为:∠BED=∠B+∠D;∠BED=360°﹣(∠B+∠D);②如图(1)所示:过点E作EM∥AB,∵AB∥CD,EM∥AB,∴EM∥CD∥AB,∴∠B=∠BEM,∠MED=∠D,∴∠BED=∠BEM+∠MED=∠B+∠D,∴∠BED=∠B+∠D;如图(2)所示:过点E作EM∥AB,∵AB∥CD,EM∥AB,∴EM∥CD∥AB,∴∠B+∠BEM=180°,∠MED+∠D=180°,∴∠BED=∠BEM+∠MED=360°﹣(∠B+∠D);③如图(3),过点E作EN∥AB,∵BF、DF分别是∠ABE和∠CDE的平分线,∴∠EBF=∠ABE,∠EDF=∠CDE,∵AB∥CD,∴∠ABE+∠BEN=180°,∵AB∥CD,AB∥NE,∴NE∥CD,∴∠CDE+∠NED=180°,∴∠ABE+∠E+∠CDE=360°,∵∠E=60°,∴∠ABE+∠CDE=300°,∴∠EBF+∠EDF=150°,∴∠BFD=360°﹣60°﹣150°=150°.22.(6分)(2022•衡东县校级开学)如图1,AB∥CD,∠PAB=124°,∠PCD=120°,求∠APC的大小.小明的解题思路:过点P作PM∥AB,通过平行线的性质来求∠APC.(1)按小明的解题思路,可求得∠APC的大小为116度;(2)如图2,已知直线m∥n,直线a,b分别与直线m,n相交于点B、D和点A、C.点P在线段BD上运动(不与B、D两点重合),记∠PAB=α,∠PCD=β,问∠APC与α,β之间有何数量关系?判断并说明理由;(3)在(2)的条件下,若把“线段BD”改为“直线BD”,请求出∠APC与α,β之间的数量关系.解:(1)过P作PM∥AB,如图:∴∠APM+∠PAB=180°,∴∠APM=180°﹣124°=56°,∵AB∥CD,∴PM∥CD,∴∠CPM+∠PCD=180°,∴∠CPM=180°﹣120°=60°,∴∠APC=56°+60°=116°;故答案为:116;(2)∠APC=∠α+∠β,理由如下:过P作PE∥AB交AC于E,如图:∵AB∥CD,∴AB∥PE∥CD,∴∠α=∠APE,∠β=∠CPE,∴∠APC=∠APE+∠CPE=∠α+∠β;(3)当P在线段BD延长线时,∠APC=∠α﹣∠β;理由如下:过P作PE∥AB,如图:∵AB∥CD,∴AB∥PE∥CD,∴∠α=∠APE,∠β=∠CPE,∵∠APC=∠APE﹣∠CPE,∴∠APC=∠α﹣∠β;当P在DB延长线时,∠APC=∠β﹣∠α;理由如下:过P作PE∥AB,如图:∵AB∥CD,∴AB∥PE∥CD,∴∠α=∠APE,∠β=∠CPE,∵∠APC=∠CPE﹣∠APE,∴∠APC=∠β﹣∠α,综上所述,当P在线段BD延长线时,∠APC=∠α﹣∠β;当P在DB延长线时,∠APC=∠β﹣∠α;当P在线段BD上时,∠APC=∠α+∠β.23.(6分)(2022春•鹿邑县月考)如图,已知AB∥CD,∠ABE与∠CDE的平分线相交于点F.(1)如图1,若∠E=70°,求∠BFD的度数;(2)如图2,若∠ABM=∠ABF,∠CDM=∠CDF,写出∠M和∠E之间的数量关系,并证明你的结论.解:(1)如图1,过点E作EN∥AB,∵EN∥AB,∴∠ABE+∠BEN=180°,∵AB∥CD,AB∥NE,∴NE∥CD,∴∠CDE+∠NED=180°,∴∠ABE+∠E+∠CDE=360°,∵∠E=70°,∴∠ABE+∠CDE=290°,∵∠ABE与∠CDE的平分线相交于点F,∴∠ABF+∠CDF=(∠ABE+∠CDE)=145°,过点F作FG∥AB,∵FG∥AB,∴∠ABF=∠BFG,∵AB∥CD,FG∥AB,∴FG∥CD,∴∠CDF=∠GFD,∴∠BFD=∠ABF+∠CDF=145°;(2)结论:∠E+6∠M=360°,证明:∵设∠ABM=x,∠CDM=y,则∠FBM=2x,∠EBF=3x,∠FDM=2y,∠EDF=3y,由(1)得:∠ABE+∠E+∠CDE=360°,∴6x+6y+∠E=360°,∵∠M+∠EBM+∠E+∠EDM=360°,∴6x+6y+∠E=∠M+5x+5y+∠E,∴∠M=x+y,∴∠E+6∠M=360°.24.(6分)(2022秋•绿园区期末)【问题情景】如图1,若AB∥CD,∠AEP=45°,∠PFD=120°.过点P作PM∥AB,则∠EPF=105°;【问题迁移】如图2,AB∥CD,点P在AB的上方,点E,F分别在AB,CD上,连接PE,PF,过P点作PN∥AB,问∠PEA,∠PFC,∠EPF之间的数量关系是∠PFC=∠PEA+∠FPE,请在下方说明理由;【联想拓展】如图3所示,在(2)的条件下,已知∠EPF=36°,∠PFA的平分线和∠PFC的平分线交于点G,过点G作GH∥AB,则∠EGF=18°.解:(1)∵AB∥PM,∴∠1=∠AEP=45°,∵AB∥CD,∴PM∥CD,∴∠2+∠PFD=180°,∵∠PFD=120°,∴∠2=180°﹣120°=60°,∴∠1+∠2=45°+60°=105°.即∠EPF=105°,故答案为:105°.(2)∠PFC=∠PEA+∠EPF.理由:∵PN∥AB,∴∠PEA=∠NPE,∵∠FPN=∠NPE+∠FPE,∴∠FPN=∠PEA+∠FPE,∵PN∥AB,AB∥CD,∴PN∥CD,∴∠FPN=∠PFC,∴∠PFC=∠PEA+∠FPE,故答案为:∠PFC=∠PEA+∠FPE.(3)∵GH∥AB,AB∥CD,∴GH∥AB∥CD,∴∠HGE=∠AEG,∠HGF=∠CFG,又∵∠PEA的平分线和∠PFC的平分线交于点G,∴,由(2)可知,∠CFP=∠FPE+∠AEP,∴∠HGF=(∠FPE+∠AEP),∴∠EGF=∠HGF﹣∠HGE=(36°+∠AEP)﹣∠HGE=18°.故答案为:18°.25.(8分)(2022春•富县期末)如图,AD∥BC,∠BAD的平分线交BC于点G,∠BCD=90°.(1)求证:∠BAG=∠BGA;(2)如图②,线段AG上有一点P,满足∠ABP=3∠PBG,过点C作CH∥AG.若在直线AG上有一点M,使∠PBM=∠DCH,求的值.(1)证明:∵AD∥BC,∴∠GAD=∠BGA,∵AG平分∠BAD,∴∠BAG=∠GAD∴∠BAG=∠BGA;(2)解:有两种情况:①当M在BP的下方时,如图,设∠ABC=4x,∵∠ABP=3∠PBG,∴∠ABP=3x,∠PBG=x,∵AG∥CH,∴∠BCH=∠AGB==90°﹣2x,∵∠BCD=90°,∴∠DCH=∠PBM=90°﹣(90°﹣2x)=2x∴∠ABM=∠ABP+∠PBM=3x+2x=5x,∠GBM=2x﹣x=x,∴∠ABM:∠GBM=5x:x=5;②当M在BP的上方时,如图,同理得:∠ABM=∠ABP﹣∠PBM=3x﹣2x=x,∠GBM=2x+x=3x,∴∠ABM:∠GBM=x:3x=.综上,的值是5或.26.(8分)(2022春•武汉期末)已知,点E,F分别在直线AB,CD上,点P在直线AB上方.问题探究:(1)如图1,∠CFP+∠EPF=∠AEP,证明:AB∥CD;问题拓展:(2)如图2,AB∥CD,∠AEP的角平分线EK所在的直线和∠DFP的角平分线FR所在的直线交于Q点,请写出∠EPF和∠EQF之间的数量关系,并证明.问题迁移:(3)如图3,AB∥CD,直线MN分别交AB,CD于点M,N,若点H在线段MN上,且∠MEF=α,请直接写出∠HFE,∠MEH和∠EHF之间满足的数量关系(用含α的式子表示).(1)证明:如图,∵∠AEP是△PEH的外角,∴∠AEP=∠EPF+∠EHP,∵∠CFP+∠EPF=∠AEP,∴∠EHP=∠CFP,∴AB∥CD;(2)解:如图,2∠Q+∠P=180°理由如下:∵AB∥CD,∴∠AEK=∠CME,∠EHF=∠PFD,∵EK平分∠AEP,∴∠AEK=∠KEP,∴∠AEK=∠KEP=∠CME,设∠AEK=∠KEP=∠CME=x,则∠QMF=x,∠AEP=2x,∴∠PEH=180°﹣2x,∵FR平分∠PFD,∴∠PFR=∠DFR,设∠PFR=∠DFR=y,则∠MFQ=y,∠EHF=2y,∴∠Q=180°﹣∠QMF﹣∠MFQ=180
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 北京2025年北京市劳动人民文化宫事业单位招聘6人笔试历年参考题库附带答案详解
- 养猪场买卖合同正规范例二零二五年
- 二零二五商厅出租合同
- 房屋转租合同范例
- 二手房买卖全款合同范例
- 二零二五版全新物业管理车位协议
- 水稻种植回收合同书
- 民用航空法基础 教案 - 模块7-13 民用航空运输合同法律制度-法律责任
- 商务谈判信息精密管理
- 乡村小镇美术课件
- TGDNAS 043-2024 成人静脉中等长度导管置管技术
- 2024年全国证券投资顾问之证券投资顾问业务考试经典测试题(附答案)
- TD/T 1039-2013 土地整治项目工程量计算规则(正式版)
- 《陆上风电场工程概算定额》NBT 31010-2019
- 2024年成都都江堰投资发展集团有限公司招聘笔试冲刺题(带答案解析)
- 新能源汽车构造(中)
- 2024年山东省事业单位历年面试题目及答案解析50套
- 2024年事业编考试模拟题及答案
- 二十碳五烯酸乙酯软胶囊-临床用药解读
- 第五章 中国特色社会主义理论体系的形成发展(一)
- Donald-Trump唐纳德特朗普简介PPT
评论
0/150
提交评论