版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【赢在中考·黄金八卷】备战2023年中考数学全真模拟卷(广东专用)第五模拟(本卷满分120分,考试时间为90分钟)第Ⅰ卷(选择题共30分)一、单选题(共10小题,每小题3分,共30分。每小题给出的四个选项中只有一个选项是最符合题意的)1.﹣3的绝对值是()A.﹣3 B.3 C.- D.2.2019年4月10日,人类首张黑洞图片问世,该黑洞位于室女座一个巨椭圆星系的中心,距离地球万光年.将数据万用科学记数法表示为()A. B. C. D.3.下列立体图形中,主视图是三角形的是(
).A. B. C. D.4.如图,直线∥,等腰直角的两个顶点、分别落在直线、上,,若,则的度数是(
)A. B. C. D.5.下列计算正确的是()A.x2•x3=x6 B.x6÷x3=x3 C.x3+x3=2x6 D.(﹣2x)3=6x36.如图,数轴上的点A、B分别对应实数a、b,下列结论中正确的是(
)A.a>b B.|a|>|b| C.-a<b D.a+b>07.若点P(1﹣2t,t﹣3)位于第三象限,则t的取值范围是()A.t<3 B. C. D.t8.关于x的一元二次方程x2+(m﹣6)x﹣3m=0的根的情况是()A.没有实数根 B.有两个相等的实数根C.有两个不相等的实数根 D.根的情况由m的值确定9.如图,从一块直径为24cm的圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A,B,C在圆周上.将剪下的扇形作为一个圆锥的侧面,则这个圆锥的底面圆的半径是(
)A.2cm B.12cm C.6cm D.3cm10.已知二次函数的图象如图所示,则一次函数的图象和反比例函数的图象在同一坐标系中大致是()A.B.C. D.第II卷(非选择题)二、填空题(共7小题,每小题4分,共28分)11.分解因式:______.12.如图,直线,相交于点O,,,则的度数为__________.13.在一个不透明的盒子里装有若干个红球和20个白球,这些球除颜色外其余全部相同,每次从袋子中摸出一球记下颜色后放回,通过多次重复实验发现摸到红球的频率稳定在0.6附近,则袋中红球大约有________个.14.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型若扇形的半径为4,圆心角为,则圆的半径为______.15.在中,,若,则=______.16.如图,矩形中,、交于点,、分别为、的中点.若,则的长为__.17.如图,在中,,点是边的中点,点在边上运动,若平分的周长时,则的长是_______.三、解答题(共3小题,每小题6分,共18分)18.计算:+2sin60°﹣|1﹣|.19.先化简,再求值:(2x+3)(2x-3)-(x+2)2+4(x+3),其中x=-1.20.已知,如图,,,,,求证:.四、解答题(共3小题,每小题8分,共24分)21.为了解某校九年级学生的体质健康状况,随机抽取了该校九年级学生的10%进行测试,将这些学生的测试成绩(x)分为四个等级:优秀;良好;及格;不及格,并绘制成以下两幅统计图.根据以上信息,解答下列问题:(1)在抽取的学生中不及格人数所占的百分比是______;(2)计算所抽取学生测试成绩的平均分;(3)若不及格学生的人数为2人,请估算出该校九年级学生中优秀等级的人数.22.如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD=,且点B的坐标为(n,-2).(1)求一次函数与反比例函数的解析式;(2)E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.23.如图,内接于,为直径,作交于点,延长,交于点,过点作的切线,交于点(1)求证:;(2)如果,,求弦的长.五、解答题(共2小题,每小题10分,共20分)24.如图,在平面直角坐标系中,已知抛物线交x轴于、B两点,交y轴于点C,其对称轴为,(1)求该抛物线的函数解析式;(2)P为第四象限内抛物线上一点,连接,过点C作交x轴于点Q,连接,求面积的最大值及此时点P的坐标.(3)在(2)的条件下,将抛物线向右平移经过点Q,得到新抛物线,点E在新抛物线的对称轴上,是否在平面内存在一点F,使得以A、P、E、F为顶点的四边形是矩形?若存在,直接写出点F的坐标;若不存在,请说明理由.25.如图1,将三角板放在正方形上,使三角板的直角顶点与正方形的顶点重合,三角板的一边交于点.另一边交的延长线于点.(1)观察猜想:线段与线段的数量关系是_____;(2)探究证明:如图2,移动三角板,使顶点始终在正方形的对角线上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由:(3)拓展延伸:如图3,将(2)中的“正方形”改为“矩形”,且使三角板的一边经过点,其他条件不变,若、,请探究线段与线段之间存在怎样的数量关系?(用含、的代数式表示)【赢在中考·黄金八卷】备战2023年中考数学全真模拟卷(广东专用)第五模拟(本卷满分120分,考试时间为90分钟)第Ⅰ卷(选择题共30分)一、单选题(共10小题,每小题3分,共30分。每小题给出的四个选项中只有一个选项是最符合题意的)1.﹣3的绝对值是()A.﹣3 B.3 C.- D.【答案】B【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-3|=3.故选B.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.2.2019年4月10日,人类首张黑洞图片问世,该黑洞位于室女座一个巨椭圆星系的中心,距离地球万光年.将数据万用科学记数法表示为()A. B. C. D.【答案】C【分析】根据科学记数法的表示方法即可求解.【详解】5500万=5.5×107,故选C【点睛】此题主要考查科学记数法的表示,解题的关键是熟知科学记数法的表示方法.3.下列立体图形中,主视图是三角形的是(
).A. B. C. D.【答案】B【分析】根据从正面看得到的图形是主视图,可得图形的主视图.【详解】A、C、D主视图是矩形,故A、C、D不符合题意;B、主视图是三角形,故B正确;故选B.【点睛】本题考查了简单几何体的三视图,圆锥的主视图是三角形.4.如图,直线∥,等腰直角的两个顶点、分别落在直线、上,,若,则的度数是(
)A. B. C. D.【答案】B【分析】根据平行线的性质可得出,根据等腰直角三角形的性质可得出,即,再代入即可求出的度数.【详解】解:,.为等腰直角三角形,,.又,.故选:B.【点睛】本题考查了等腰直角三角形以及平行线的性质,根据等腰直角三角形的性质结合平行线的性质找出是解题的关键.5.下列计算正确的是()A.x2•x3=x6 B.x6÷x3=x3 C.x3+x3=2x6 D.(﹣2x)3=6x3【答案】B【分析】A选项:底数不变,指数相加;B选项:底数不变,指数相减;C选项:根据“同类项的系数相加,所得的结果作为系数,字母和字母的指数不变”进行计算;D选项:根据积的乘方(把积中的每一个乘数分别乘方,再把所得的幂相乘)进行计算.【详解】A选项:x2•x3=x2+3=x5,计算错误,不符合题意;B选项:x6÷x3=x3,计算正确,符合题意;C选项:x3+x3=2x6,计算错误,不符合题意;D选项:(﹣2x)3=-8x3,计算错误,不符合题意.故选:B.【点睛】考查了同底数幂乘除法、积的乘方和合并同类项,解题关键是熟记其计算法则.6.如图,数轴上的点A、B分别对应实数a、b,下列结论中正确的是(
)A.a>b B.|a|>|b| C.-a<b D.a+b>0【答案】B【分析】根据数轴确定出a、b的正负情况以及绝对值的大小,然后对各选项分析判断后利用排除法求解.【详解】解:根据数轴,a<0,b>0,且|a||b|,A、应为a<b,故本选项错误;B、应为|a||b|,故本选项正确;C、∵a<0,b>0,且|a||b|,∴a+b0,∴-ab,故本选项错误;D、应该是a+b0,故本选项错误.故选:B.【点睛】本题考查了实数与数轴的关系,有理数的加法,根据数轴确定出a、b的正负情况以及绝对值的大小,有理数的加法中和的符号的确定是解题的关键.7.若点P(1﹣2t,t﹣3)位于第三象限,则t的取值范围是()A.t<3 B. C. D.t【答案】C【分析】根据第三象限的点的横坐标与纵坐标都是负数列出不等式组,然后求解即可.【详解】解:∵点P(1-2t,t-3)在第三象限,∴,解不等式①得,t>,解不等式②得,t<3,所以,不等式组的解集是<t<3.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8.关于x的一元二次方程x2+(m﹣6)x﹣3m=0的根的情况是()A.没有实数根 B.有两个相等的实数根C.有两个不相等的实数根 D.根的情况由m的值确定【答案】C【分析】找出方程二次项系数,一次项系数,以及常数项,计算出根的判别式的值,判断即可.【详解】解:关于x的一元二次方程x2+(m﹣6)x﹣3m=0,∵△=(m﹣6)2﹣4×1×(﹣3m)=m2﹣12m+36+12m=m2+36>0,∴方程有两个不相等的实数根.故选:C.【点睛】此题考查了根的判别式,熟练掌握一元二次方程根的判别式表示的意义是解本题的关键.9.如图,从一块直径为24cm的圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A,B,C在圆周上.将剪下的扇形作为一个圆锥的侧面,则这个圆锥的底面圆的半径是(
)A.2cm B.12cm C.6cm D.3cm【答案】D【分析】由圆的直径为,,求出AB的长度,用弧长公式可求得的长度,圆锥的底面圆的周长是的长度列方程求解,即可得到答案.【详解】解:的长度故选:【点睛】本题考查的是扇形的弧长的计算,圆锥的底面圆的周长与扇形弧长的关系,勾股定理的应用,掌握以上知识是解题的关键.10.已知二次函数的图象如图所示,则一次函数的图象和反比例函数的图象在同一坐标系中大致是()A.B.C. D.【答案】C【分析】先根据二次函数的图像开口向下和对称轴可知,由抛物线交y的正半轴,可知,由当时,,可知,然后利用排除法即可得出正确答案.【详解】解:∵二次函数的图像开口向下,∴,∵,∴,∵抛物线与y轴相交于正半轴,∴,∴直线经过一、二、四象限,由图像可知,当x=1时,,∴,∴反比例函数的图像必在二、四象限,故A、B、D错误,C正确;故选:C.【点睛】本题考查的是二次函数的图像与系数的关系,反比例函数及一次函数的性质,熟知以上知识是解答此题的关键.第II卷(非选择题)二、填空题(共7小题,每小题4分,共28分)11.分解因式:______.【答案】【分析】先提取公因式,再利用平方差公式继续分解即可.【详解】,故答案为:.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.如图,直线,相交于点O,,,则的度数为__________.【答案】110【分析】先根据对顶角相等求出∠DOB,进而结合即可求出∠EOB.【详解】解:∵∠1=35°,∴∠DOB=∠1=35°,又∵∠2=75°,∴∠EOB=∠2+∠DOB=110°.故答案为:110.【点睛】本题考查了角的计算以及对顶角相等的性质,比较简单.13.在一个不透明的盒子里装有若干个红球和20个白球,这些球除颜色外其余全部相同,每次从袋子中摸出一球记下颜色后放回,通过多次重复实验发现摸到红球的频率稳定在0.6附近,则袋中红球大约有________个.【答案】30【分析】设袋中红球有x个,根据题意用红球数除以白球和红球的总数等于红球的频率列出方程即可求出红球数.【详解】解:设袋中红球有x个,根据题意,得:,解并检验得:x=30.所以袋中红球有30个.故答案为:30.【点睛】本题考查了利用频率估计概率,解决本题的关键是用频率的集中趋势来估计概率,这个固定的近似值14.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型若扇形的半径为4,圆心角为,则圆的半径为______.【答案】1【分析】利用圆锥的底面周长等于侧面展开图的扇形弧长,根据弧长公式计算.【详解】解:扇形的弧长是:,设圆的半径为r,则底面圆的周长是,圆锥的底面周长等于侧面展开图的扇形弧长则得到:,则,故答案为1【点睛】本题考查了有关扇形和圆锥的相关计算解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:圆锥的母线长等于侧面展开图的扇形半径;圆锥的底面周长等于侧面展开图的扇形弧长正确对这两个关系的记忆是解题的关键.15.在中,,若,则=______.【答案】【分析】根据同角的正切,可得正弦与余弦的关系,根据同角的正弦的平方加它的余弦的平方等于1,可得的值,再根据一个角余弦等于它余角的正弦,可得答案.【详解】解:,.又,.、互为余角,,故答案为:.【点睛】本题考查了互余两角三角函数的关系,利用了同角三角函数的关系,互余两角三角函数的关系:一个角余弦等于它余角的正弦.16.如图,矩形中,、交于点,、分别为、的中点.若,则的长为__.【答案】16.【分析】根据中位线的性质求出长度,再依据矩形的性质进行求解问题.【详解】、分别为、的中点,,四边形是矩形,,故答案为.【点睛】本题考查了矩形的性质以及三角形中位线的定理,解题的关键是找到线段间的倍分关系.17.如图,在中,,点是边的中点,点在边上运动,若平分的周长时,则的长是_______.【答案】【分析】延长CA至M,使AM=AB,连接BM,作AN⊥BM于N,由DE平分△ABC的周长,又CD=DB,得到ME=EC,根据中位线的性质可得DE=BM,再求出BM的长即可得到结论.【详解】解:延长CA至M,使AM=AB,连接BM,作AN⊥BM于N,∵DE平分△ABC的周长,CD=DB,∴ME=EC,∴DE=BM,∵∠BAC=60°,∴∠BAM=120°,∵AM=AB,AN⊥BM,∴∠BAN=60°,BN=MN,∴∠ABN=30°,∴AN=AB=1,∴BN=,∴BM=2,∴DE=,故答案为:.【点睛】本题考查了三角形的中位线的性质,等腰三角形的性质,含30°的直角三角形的性质以及勾股定理等知识点,作出辅助线综合运用基本性质进行推理是解题的关键.三、解答题(共3小题,每小题6分,共18分)18.计算:+2sin60°﹣|1﹣|.【答案】2【分析】直接利用特殊的三角函数值、零指数幂的性质、绝对值的性质分别化简的出答案.【详解】解:+2sin60°﹣|1﹣|=1+2×-(﹣1)=1+-+1=2【点睛】此题考查了化简绝对值,零指数幂的运算和特殊的三角函数值,正确化简各数是解题的关键.19.先化简,再求值:(2x+3)(2x-3)-(x+2)2+4(x+3),其中x=-1.【答案】3x2-1,2【分析】先利用平方差公式、完全平方公式、单项式乘多项式法则展开,再去括号、合并同类项即可化简原式,继而将x的值代入计算可得答案.【详解】解:原式=4x2-9-(x2+4x+4)+4x+12=4x2-9-x2-4x-4+4x+12=3x2-1,把x=-1代入,原式=3×1-1=2.【点睛】本题主要考查整式的混合运算-化简求值,解题的关键是掌握平方差公式、完全平方公式、单项式乘多项式法则、去括号法则、合并同类项法则.20.已知,如图,,,,,求证:.【答案】见解析【分析】由∠ECB=70°得∠ACB=110°,再由AB∥DE,证得∠CAB=∠E,再结合已知条件AB=AE,可利用AAS证得△ABC≌△EAD,即可解答.【详解】证明:∵∠ECB=70°,∴∠ACB=110°,又∵∠D=110°,∴∠ACB=∠D,∵AB∥DE,∴∠CAB=∠E,在△ABC和△EAD中,
∴△ABC≌△EAD,∴AC=ED.【点睛】此题考查全等三角形判定与性质,在掌握判定定理是解题关键.四、解答题(共3小题,每小题8分,共24分)21.为了解某校九年级学生的体质健康状况,随机抽取了该校九年级学生的10%进行测试,将这些学生的测试成绩(x)分为四个等级:优秀;良好;及格;不及格,并绘制成以下两幅统计图.根据以上信息,解答下列问题:(1)在抽取的学生中不及格人数所占的百分比是______;(2)计算所抽取学生测试成绩的平均分;(3)若不及格学生的人数为2人,请估算出该校九年级学生中优秀等级的人数.【答案】(1)5%;(2)所抽取学生测试成绩的平均分79.8(分);(3)估算出该校九年级学生中优秀等级的人数为200人.【分析】(1)用100%减去优秀,良好,和及格部分对应的百分比;(2)利用加权平均数的方法计算即可;(3)先算出抽取的总人数,再算出抽取人数中优秀的人数,再除以10%可得结果.【详解】解:(1)由题意可得:100%-50%-20%-25%=5%,∴在抽取的学生中不及格人数所占的百分比是5%;(2)由题意可得:90×50%+78×25%+66×20%+42×5%=79.8(分),∴所抽取学生测试成绩的平均分为79.8分;(3)∵不及格学生的人数为2人,∴2÷5%×50%÷10%=200(人),∴该校九年级学生中优秀等级的人数为200人.【点睛】本题考查了条形统计图和扇形统计图,加权平均数,样本估计总体,解题的关键是从图表中获取信息,正确进行计算.22.如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD=,且点B的坐标为(n,-2).(1)求一次函数与反比例函数的解析式;(2)E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.【答案】(1);(2)当点E(0,8)或(0,5)或(0,-5)或(0,)时,△AOE是等腰三角形.【分析】(1)由垂直的定义及锐角三角函数定义求出AO的长,利用勾股定理求出OD的长,确定出A坐标,进而求出m的值确定出反比例解析式,把B的坐标代入反比例解析式求出n的值,确定出B坐标,利用待定系数法求出一次函数解析式即可;(2)分类讨论:当AO为等腰三角形腰与底时,求出点E坐标即可.【详解】(1)一次函数与反比例函数图象交于与,且轴,,在中,,,,即,根据勾股定理得:,,代入反比例解析式得:,即,把坐标代入得:,即,代入一次函数解析式得:,解得:,即;(2)当,即,;当时,得到,即;当时,由,,得到直线解析式为,中点坐标为,垂直平分线方程为,令,得到,即,综上,当点或或或时,是等腰三角形.【点睛】此题考查了反比例函数与一次函数的交点问题,熟练掌握各自的性质是解本题的关键.23.如图,内接于,为直径,作交于点,延长,交于点,过点作的切线,交于点(1)求证:;(2)如果,,求弦的长.【答案】(1)见解析;(2).【分析】(1)连接OC,由切线的性质可证得∠ACE+∠A=90°,又∠CDE+∠A=90°,可得∠CDE=∠ACE,则结论得证;(2)先根据勾股定理求出OE,OD,AD的长,证明Rt△AOD∽Rt△ACB,得出比例线段即可求出AC的长.【详解】(1)证明:连接,∵与相切,是的半径,∴,∴.∵,∴,∴.∵,∴.∴,∴.(2)∵为直径,∴.在中,,又,∴,又∵,∴,∴.∵,∴.在中,,,∴.∴.在中,.在和中,∵,∴,∴,即,∴.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和相似三角形的判定与性质.五、解答题(共2小题,每小题10分,共20分)24.如图,在平面直角坐标系中,已知抛物线交x轴于、B两点,交y轴于点C,其对称轴为,(1)求该抛物线的函数解析式;(2)P为第四象限内抛物线上一点,连接,过点C作交x轴于点Q,连接,求面积的最大值及此时点P的坐标.(3)在(2)的条件下,将抛物线向右平移经过点Q,得到新抛物线,点E在新抛物线的对称轴上,是否在平面内存在一点F,使得以A、P、E、F为顶点的四边形是矩形?若存在,直接写出点F的坐标;若不存在,请说明理由.【答案】(1)(2)面积的最大值为4,此时P的坐标为(3)存在,点F的坐标为,【分析】(1)把点A的坐标代入得到,再根据抛物线的对称轴,得出a和b的关系式,即可求解;(2)连接,过P点作平行于y轴的直线交于H点,根据可得,从而求面积的最大值即可,通过设P的坐标,得到H的坐标,从而建立关于面积的二次函数表达式,最终结合二次函数的性质求解即可;(3)通过(2)的结论首先确定出平移后抛物线的解析式,设出E,F的坐标,运用勾股定理进行分类讨论即可.【详解】(1)将,代入得:,∵抛物线对称轴为对称轴为,∴,即,把代入得:,解得:,∴,∴抛物线的解析式为:;(2)如图所示,连接PC,PB,BC,过P点作平行于y轴的直线交BC于H点,∵,∴,即求面积的最大值即可,把代入得,∴C坐标为,设直线BC的解析式为:,将,代入得:,解得:,∴直线BC的解析式为:,设,则,∴,∴,根据二次函数的性质可得:当时,取得最大值为4,将代入,得到此时P的坐标为,∴面积的最大值为4,此时P的坐标为;(3)存在,理由如下:由(2)可知,当面积的最大值为4时,P的坐标为,∵,∴,则,∵原抛物线解析式为:,∴设向右平移后的解析式为:,将代入求得:(舍负值),∴平移后抛物线的解析式为:,其对称轴为直线,∴设,,则结合A、P的坐标可得:,,,①当时,如图所示,此时根据勾股定理得:,即:,解得:,即:,此时根据A、P、E、F四点的相对位置关系可得:,解得:,∴;②当时,如图所示,此时根据勾股定理得:,即:,解得:,即:,此时根据A、P、E、F四点的相对位置关系可得:,解得:,∴;③当AE⊥PE时,根据勾股定理得:,即:,整理得:,∵,∴上述方程在实数范围内无解,即不存在的情况,综上所述,所有可能的点F的坐标为,.【点睛】本题考查二次函数综合运用,以及矩形的性质,准确求得抛物线的解析式,并灵活根据矩形的性质进行分类讨论是解题关键.25.如图1,将三角板放在正方形上,使三角板的直角顶点与正方形的顶点重合,三角板的一边交于点.另一边交的延长线于点.(1)观察猜想:线段与线段的数量关系是_____;(2)探究证明:如图2,移动三角板,使顶点始终在正方形的对角线上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由:(3)拓展延伸:如图3,将(2)中的“正方形”改为“矩形”,且使三角板的一边经过点,其他条件不变,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 拆迁补偿房买卖合同注意事项
- 企业安全保证书撰写技巧解析
- 小班数学活动大与小
- 企业数字化转型中的数据分析与业务优化考核试卷
- 医疗卫生材料的进口与出口管理考核试卷
- 物流园购车合同模板
- 普通商务合同范例
- 淘宝变更合同模板
- 信达公司法律服务合同范例
- 桥头饭堂食材配送合同模板
- 第4课 日本明治维新(说课稿)-2024-2025学年九年级历史下册素养提升说课稿(统编版)
- 2024抖音短视频代运营合同合作协议书(律师修订版)
- 第七单元长方形和正方形 单元测试(含答案)2024-2025学年三年级上册数学人教版
- 造价咨询项目部外聘人员合同范本
- 2025年新高考语文复习 诗歌鉴赏-语言 课件
- 汽车租赁公司车辆养护制度
- 2024-2030年船用发动机行业市场现状供需分析及投资评估规划分析研究报告
- 2024新外研版七年级上册课本重点知识点及范文归纳
- 2023年江苏常州中考满分作文《方寸之间天地大》4
- 部编二年级上册道德与法治全册教案(共16课)
- 2024年长江产业投资集团限公司招聘【150人】公开引进高层次人才和急需紧缺人才笔试参考题库(共500题)答案详解版
评论
0/150
提交评论