第八讲平面直角坐标系及函数(原卷版+解析)_第1页
第八讲平面直角坐标系及函数(原卷版+解析)_第2页
第八讲平面直角坐标系及函数(原卷版+解析)_第3页
第八讲平面直角坐标系及函数(原卷版+解析)_第4页
第八讲平面直角坐标系及函数(原卷版+解析)_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第八讲平面直角坐标系及函数【命题点1平面直角坐标系中点的坐标特征】类型一坐标确定位置1.(2022•柳州)如图,这是一个利用平面直角坐标系画出的某学校的示意图,如果这个坐标系分别以正东、正北方向为x轴、y轴的正方向,并且综合楼和食堂的坐标分别是(4,1)和(5,4),则教学楼的坐标是()A.(1,1) B.(1,2) C.(2,1) D.(2,2)2.(2022•宜昌)如图是一个教室平面示意图,我们把小刚的座位“第1列第3排”记为(1,3).若小丽的座位为(3,2),以下四个座位中,与小丽相邻且能比较方便地讨论交流的同学的座位是()A.(1,3) B.(3,4) C.(4,2) D.(2,4)类型二点于象限3.(2022•攀枝花)若点A(﹣a,b)在第一象限,则点B(a,b)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.(2022•衢州)在平面直角坐标系中,点A(﹣1,﹣2)落在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.(2022•河池)如果点P(m,1+2m)在第三象限内,那么m的取值范围是()A.﹣<m<0 B.m>﹣ C.m<0 D.m<﹣6.(2022•扬州)在平面直角坐标系中,点P(﹣3,a2+1)所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.(2022•广安)若点P(m+1,m)在第四象限,则点Q(﹣3,m+2)在第象限.类型三点的平移于对称8.(2021•贺州)在平面直角坐标系中,点A(3,2)关于原点对称的点的坐标是()A.(﹣3,2) B.(3,﹣2) C.(﹣2,﹣3) D.(﹣3,﹣2)9.(2021•阿坝州)平面直角坐标系中,点P(2,1)关于y轴的对称点P′的坐标是()A.(﹣2,﹣1) B.(1,2) C.(2,﹣1) D.(﹣2,1)10.(2021•兰州)在平面直角坐标系xOy中,点A(﹣2,4)关于x轴对称的点B的坐标是()A.(﹣2,4) B.(﹣2,﹣4) C.(2,﹣4) D.(2,4)11.(2022•广东)在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是()A.(3,1) B.(﹣1,1) C.(1,3) D.(1,﹣1)类型四:点坐标规律12.(2022•河南)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O重合,AB∥x轴,交y轴于点P.将△OAP绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A的坐标为()A.(,﹣1) B.(﹣1,﹣) C.(﹣,﹣1) D.(1,)13.(2022•丽水)三个能够重合的正六边形的位置如图.已知B点的坐标是(﹣,3),则A点的坐标是.14.(2022•淄博)如图,正方形ABCD的中心与坐标原点O重合,将顶点D(1,0)绕点A(0,1)逆时针旋转90°得点D1,再将D1绕点B逆时针旋转90°得点D2,再将D2绕点C逆时针旋转90°得点D3,再将D3绕点D逆时针旋转90°得点D4,再将D4绕点A逆时针旋转90°得点D5……依此类推,则点D2022的坐标是.15.(2022•荆门)如图,过原点的两条直线分别为l1:y=2x,l2:y=﹣x,过点A(1,0)作x轴的垂线与l1交于点A1,过点A1作y轴的垂线与l2交于点A2,过点A2作x轴的垂线与l1交于点A3,过点A3作y轴的垂线与l2交于点A4,过点A4作x轴的垂线与l1交于点A5,……,依次进行下去,则点A20的坐标为.【命题点2函数及其自变量的取值范围】类型一常量与变量16.(2022•广东)水中涟漪(圆形水波)不断扩大,记它的半径为r,则圆周长C与r的关系式为C=2πr.下列判断正确的是()A.2是变量 B.π是变量 C.r是变量 D.C是常量类型二函数的关系式17.(2022•大连)汽车油箱中有汽油30L.如果不再加油,那么油箱中的油量y(单位:L)随行驶路程x(单位:km)的增加而减少,平均耗油量为0.1L/km.当0≤x≤300时,y与x的函数解析式是()A.y=0.1x B.y=﹣0.1x+30 C.y= D.y=﹣0.1x2+30x18.(2022•益阳)已知一个函数的因变量y与自变量x的几组对应值如表,则这个函数的表达式可以是()x…﹣1012…y…﹣2024…A.y=2x B.y=x﹣1 C.y= D.y=x2类型三函数自变量的取值范围19.(2022•牡丹江)函数y=中,自变量x的取值范围是()A.x≤﹣2 B.x≥﹣2 C.x≤2 D.x≥220.(2022•恩施州)函数y=的自变量x的取值范围是()A.x≠3 B.x≥3 C.x≥﹣1且x≠3 D.x≥﹣121.(2022•黄石)函数y=+的自变量x的取值范围是()A.x≠﹣3且x≠1 B.x>﹣3且x≠1 C.x>﹣3 D.x≥﹣3且x≠132.(2022•哈尔滨)在函数y=中,自变量x的取值范围是.类型四函数值的运算22.(2022•上海)已知f(x)=3x,则f(1)=.23.(2022•相城区校级自主招生)我们引入记号f(x)表示某个函数,用f(a)表示x=a时的函数值.例如函数y=x2+1可以记为f(x)=x2+1,并有f(﹣2)=(﹣2)2+1=5,f(a+1)=(a+1)2+1=a2+2a+2.狄利克雷是德国著名数学家,是最早倡导严格化方法的数学家之一.狄利克雷函数f(x)=的出现表示数学家对数学的理解开始了深刻的变化,从研究“算”到研究更抽象的“概念、性质和结构”.关于狄利克雷函数,下列说法:①f(π)=f()②对于任意的实数a,f(f(a))=0③对于任意的实数b,f(b)=f(﹣b)④存在一个不等于0的常数t,使得对于任意的x都有f(x+t)=f(x)⑤对于任意两个实数m和n,都有f(m)+f(n)≥f(m+n).其中正确的有(填序号).24.(2022•枣庄)已知y1和y2均是以x为自变量的函数,当x=n时,函数值分别是N1和N2,若存在实数n,使得N1+N2=1,则称函数y1和y2是“和谐函数”.则下列函数y1和y2不是“和谐函数”的是()A.y1=x2+2x和y2=﹣x+1 B.y1=和y2=x+1 C.y1=﹣和y2=﹣x﹣1 D.y1=x2+2x和y2=﹣x﹣1【命题点3分析、判断函数图像】类型一实际问题考向1行程问题25.(2022•巴中)甲、乙两人沿同一直道从A地到B地,在整个行程中,甲、乙离A地的距离S与时间t之间的函数关系如图所示,下列说法错误的是()A.甲比乙早1分钟出发 B.乙的速度是甲的速度的2倍 C.若甲比乙晚5分钟到达,则甲用时10分钟 D.若甲出发时的速度为原来的2倍,则甲比乙提前1分钟到达B地26.(2022•北碚区自主招生)小玲从山脚沿某上山步道“踏青”,匀速行走一段时间后到达山腰平台停下来休息一会儿,休息结束后她加快了速度,匀速直至到达山顶.设从她出发开始所经过的时间为t,她行走的路程为s,下面能反映s与t的函数关系的大致图象是()A. B. C. D.27.(2022•临沂)甲、乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y(单位:km)与时间x(单位:h)的对应关系如图所示,下列说法中不正确的是()A.甲车行驶到距A城240km处,被乙车追上 B.A城与B城的距离是300km C.乙车的平均速度是80km/h D.甲车比乙车早到B城28.(2022•河北)某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m个人共同完成需n天,选取6组数对(m,n),在坐标系中进行描点,则正确的是()A. B. C. D.29.(2022•温州)小聪某次从家出发去公园游玩的行程如图所示,他离家的路程为s米,所经过的时间为t分钟.下列选项中的图象,能近似刻画s与t之间关系的是()A. B. C. D.30.(2022•赤峰)已知王强家、体育场、学校在同一直线上,下面的图象反映的过程是:某天早晨,王强从家跑步去体育场锻炼,锻炼结束后,步行回家吃早餐,饭后骑自行车到学校.图中x表示时间,y表示王强离家的距离.则下列结论正确的是.(填写所有正确结论的序号)①体育场离王强家2.5km②王强在体育场锻炼了30min③王强吃早餐用了20min④王强骑自行车的平均速度是0.2km/min判断函数图像考向2其他问题31.(2022•河池)东东用仪器匀速向如图容器中注水,直到注满为止.用t表示注水时间,y表示水面的高度,下列图象适合表示y与t的对应关系的是()A. B. C. D.32.(2022•遵义)遵义市某天的气温y1(单位:℃)随时间t(单位:h)的变化如图所示,设y2表示0时到t时气温的值的极差(即0时到t时范围气温的最大值与最小值的差),则y2与t的函数图象大致是()A. B. C. D.33.(2022•河南)呼气式酒精测试仪中装有酒精气体传感器,可用于检测驾驶员是否酒后驾车.酒精气体传感器是一种气敏电阻(图1中的R1),R1的阻值随呼气酒精浓度K的变化而变化(如图2),血液酒精浓度M与呼气酒精浓度K的关系见图3.下列说法不正确的是()A.呼气酒精浓度K越大,R1的阻值越小 B.当K=0时,R1的阻值为100Ω C.当K=10时,该驾驶员为非酒驾状态 D.当R1=20时,该驾驶员为醉驾状态34.(2022•武汉)匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线).这个容器的形状可能是()A. B. C. D.类型二几何图像中的动态问题考向1判断函数图像-动点问题35.(2022•锦州)如图,在Rt△ABC中,∠ABC=90°,AB=2BC=4,动点P从点A出发,以每秒1个单位长度的速度沿线段AB匀速运动,当点P运动到点B时,停止运动,过点P作PQ⊥AB交AC于点Q,将△APQ沿直线PQ折叠得到△A′PQ,设动点P的运动时间为t秒,△A′PQ与△ABC重叠部分的面积为S,则下列图象能大致反映S与t之间函数关系的是()A. B. C. D.36.(2022•菏泽)如图,等腰Rt△ABC与矩形DEFG在同一水平线上,AB=DE=2,DG=3,现将等腰Rt△ABC沿箭头所指方向水平平移,平移距离x是自点C到达DE之时开始计算,至AB离开GF为止.等腰Rt△ABC与矩形DEFG的重合部分面积记为y,则能大致反映y与x的函数关系的图象为()A. B. C. D.37.(2022•铜仁市)如图,等边△ABC、等边△DEF的边长分别为3和2.开始时点A与点D重合,DE在AB上,DF在AC上,△DEF沿AB向右平移,当点D到达点B时停止.在此过程中,设△ABC、△DEF重合部分的面积为y,△DEF移动的距离为x,则y与x的函数图象大致为()A. B. C. D.38.(2022•衡阳)如图,在四边形ABCD中,∠B=90°,AC=6,AB∥CD,AC平分∠DAB.设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()A. B. C. D.考向2分析函数图像-动点问题39.(2022•齐齐哈尔)如图①所示(图中各角均为直角),动点P从点A出发,以每秒1个单位长度的速度沿A→B→C→D→E路线匀速运动,△AFP的面积y随点P运动的时间x(秒)之间的函数关系图象如图②所示,下列说法正确的是()A.AF=5 B.AB=4 C.DE=3 D.EF=840.(2022•鄂尔多斯)如图①,在正方形ABCD中,点M是AB的中点,点N是对角线BD上一动点,设DN=x,AN+MN=y,已知y与x之间的函数图象如图②所示,点E(a,2)是图象的最低点,那么a的值为()A. B.2 C. D.41.(2022•烟台)如图1,△ABC中,∠ABC=60°,D是BC边上的一个动点(不与点B,C重合),DE∥AB,交AC于点E,EF∥BC,交AB于点F.设BD的长为x,四边形BDEF的面积为y,y与x的函数图象是如图2所示的一段抛物线,其顶点P的坐标为(2,3),则AB的长为.42.(2022•营口)如图1,在四边形ABCD中,BC∥AD,∠D=90°,∠A=45°,动点P,Q同时从点A出发,点P以cm/s的速度沿AB向点B运动(运动到B点即停止),点Q以2cm/s的速度沿折线AD→DC向终点C运动,设点Q的运动时间为x(s),△APQ的面积为y(cm2),若y与x之间的函数关系的图象如图2所示,当x=(s)时,则y=cm2.【命题点4函数图像与性质探究题】43.(2022•广东)物理实验证实:在弹性限度内,某弹簧长度y(cm)与所挂物体质量x(kg)满足函数关系y=kx+15.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.x025y151925(1)求y与x的函数关系式;(2)当弹簧长度为20cm时,求所挂物体的质量.44.(2022•鄂州)在“看图说故事”活动中,某学习小组设计了一个问题情境:小明从家跑步去体育场,在那里锻炼了一阵后又走到文具店买圆规,然后散步走回家.小明离家的距离y(km)与他所用的时间x(min)的关系如图所示:(1)小明家离体育场的距离为km,小明跑步的平均速度为km/min;(2)当15≤x≤45时,请直接写出y关于x的函数表达式;(3)当小明离家2km时,求他离开家所用的时间.45.(2022•舟山)6月13日,某港口的潮水高度y(cm)和时间x(h)的部分数据及函数图象如下:x(h)…1112131415161718…y(cm)…18913710380101133202260…(数据来自某海洋研究所)(1)数学活动:①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象.②观察函数图象,当x=4时,y的值为多少?当y的值最大时,x的值为多少?(2)数学思考:请结合函数图象,写出该函数的两条性质或结论.(3)数学应用:根据研究,当潮水高度超过260cm时,货轮能够安全进出该港口.请问当天什么时间段适合货轮进出此港口?第八讲平面直角坐标系及函数【命题点1平面直角坐标系中点的坐标特征】类型一坐标确定位置1.(2022•柳州)如图,这是一个利用平面直角坐标系画出的某学校的示意图,如果这个坐标系分别以正东、正北方向为x轴、y轴的正方向,并且综合楼和食堂的坐标分别是(4,1)和(5,4),则教学楼的坐标是()A.(1,1) B.(1,2) C.(2,1) D.(2,2)【答案】D【解答】解:建立如图所示的平面直角坐标系:∴教学楼的坐标是(2,2),故选:D.2.(2022•宜昌)如图是一个教室平面示意图,我们把小刚的座位“第1列第3排”记为(1,3).若小丽的座位为(3,2),以下四个座位中,与小丽相邻且能比较方便地讨论交流的同学的座位是()A.(1,3) B.(3,4) C.(4,2) D.(2,4)【答案】C【解答】解:如图所示:与小丽相邻且能比较方便地讨论交流的同学的座位是(4,2).故选:C.类型二点于象限3.(2022•攀枝花)若点A(﹣a,b)在第一象限,则点B(a,b)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】B【解答】解:∵点A(﹣a,b)在第一象限内,∴﹣a>0,b>0,∴a<0,∴点B(a,b)所在的象限是:第二象限.故选:B.4.(2022•衢州)在平面直角坐标系中,点A(﹣1,﹣2)落在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】C【解答】解:∵﹣1<0,﹣2<0,∴点A(﹣1,﹣2)在第三象限,故选:C.5.(2022•河池)如果点P(m,1+2m)在第三象限内,那么m的取值范围是()A.﹣<m<0 B.m>﹣ C.m<0 D.m<﹣【答案】D【解答】解:根据题意得,解①得m<0,解②得m<.则不等式组的解集是m<﹣.故选:D.6.(2022•扬州)在平面直角坐标系中,点P(﹣3,a2+1)所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】B【解答】解:∵a2≥0,∴a2+1≥1,∴点P(﹣3,a2+1)所在的象限是第二象限.故选:B.7.(2022•广安)若点P(m+1,m)在第四象限,则点Q(﹣3,m+2)在第象限.【答案】二【解答】解:∵点P(m+1,m)在第四象限,∴,∴﹣1<m<0,∴1<m+2<2,∴点Q(﹣3,m+2)在第二象限,故答案为:二.类型三点的平移于对称8.(2021•贺州)在平面直角坐标系中,点A(3,2)关于原点对称的点的坐标是()A.(﹣3,2) B.(3,﹣2) C.(﹣2,﹣3) D.(﹣3,﹣2)【答案】D【解答】解:点(3,2)关于原点对称的点的坐标是:(﹣3,﹣2).故选:D.9.(2021•阿坝州)平面直角坐标系中,点P(2,1)关于y轴的对称点P′的坐标是()A.(﹣2,﹣1) B.(1,2) C.(2,﹣1) D.(﹣2,1)【答案】D【解答】解:点P(2,1)关于y轴对称的点P′的坐标是(﹣2,1).故选:D.10.(2021•兰州)在平面直角坐标系xOy中,点A(﹣2,4)关于x轴对称的点B的坐标是()A.(﹣2,4) B.(﹣2,﹣4) C.(2,﹣4) D.(2,4)【答案】B【解答】解:在平面直角坐标系xOy中,点A(﹣2,4)关于x轴对称的点B的坐标是(﹣2,﹣4).故选:B.11.(2022•广东)在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是()A.(3,1) B.(﹣1,1) C.(1,3) D.(1,﹣1)【答案】A【解答】解:将点(1,1)向右平移2个单位后,横坐标加2,所以平移后点的坐标为(3,1),故选:A.类型四:点坐标规律12.(2022•河南)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O重合,AB∥x轴,交y轴于点P.将△OAP绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A的坐标为()A.(,﹣1) B.(﹣1,﹣) C.(﹣,﹣1) D.(1,)【答案】B【解答】解:∵边长为2的正六边形ABCDEF的中心与原点O重合,∴OA=AB=2,∠BAO=60°,∵AB∥x轴,∴∠APO=90°,∴∠AOP=30°,∴AP=1,OP=,∴A(1,),∵将△OAP绕点O顺时针旋转,每次旋转90°,可知点A2与D重合,由360°÷90°=4可知,每4次为一个循环,∴2022÷4=505……2,∴点A2022与点A2重合,∵点A2与点A关于原点O对称,∴A2(﹣1,﹣),∴第2022次旋转结束时,点A的坐标为(﹣1,﹣),故选:B.13.(2022•丽水)三个能够重合的正六边形的位置如图.已知B点的坐标是(﹣,3),则A点的坐标是.【答案】(,﹣3)【解答】解:因为点A和点B关于原点对称,B点的坐标是(﹣,3),所以A点的坐标是(,﹣3),故答案为:(,﹣3).14.(2022•淄博)如图,正方形ABCD的中心与坐标原点O重合,将顶点D(1,0)绕点A(0,1)逆时针旋转90°得点D1,再将D1绕点B逆时针旋转90°得点D2,再将D2绕点C逆时针旋转90°得点D3,再将D3绕点D逆时针旋转90°得点D4,再将D4绕点A逆时针旋转90°得点D5……依此类推,则点D2022的坐标是.【答案】(﹣2023,2022)【解答】解:∵将顶点D(1,0)绕点A(0,1)逆时针旋转90°得点D1,∴D1(1,2),∵再将D1绕点B逆时针旋转90°得点D2,再将D2绕点C逆时针旋转90°得点D3,再将D3绕点D逆时针旋转90°得点D4,再将D4绕点A逆时针旋转90°得点D5……∴D2(﹣3,2),D3(﹣3,﹣4),D4(5,﹣4),D5(5,6),D6(﹣7,6),……,观察发现:每四个点一个循环,D4n+2(﹣4n﹣3,4n+2),∵2022=4×505+2,∴D2022(﹣2023,2022);故答案为:(﹣2023,2022).15.(2022•荆门)如图,过原点的两条直线分别为l1:y=2x,l2:y=﹣x,过点A(1,0)作x轴的垂线与l1交于点A1,过点A1作y轴的垂线与l2交于点A2,过点A2作x轴的垂线与l1交于点A3,过点A3作y轴的垂线与l2交于点A4,过点A4作x轴的垂线与l1交于点A5,……,依次进行下去,则点A20的坐标为.【答案】(1024,﹣1024)【解答】解:当x=1时,y=2,∴点A1的坐标为(1,2);当y=﹣x=2时,x=﹣2,∴点A2的坐标为(﹣2,2);同理可得:A3(﹣2,﹣4),A4(4,﹣4),A5(4,8),A6(﹣8,8),A7(﹣8,﹣16),A8(16,﹣16),A9(16,32),…,∴A4n+1(22n,22n+1),A4n+2(﹣22n+1,22n+1),A4n+3(﹣22n+1,﹣22n+2),A4n+4(22n+2,﹣22n+2)(n为自然数).∵20=5×4,∴错误,应改为:∴点A20的坐标为(22×4+2,﹣22×4+2),即(210,﹣210),即(1024,﹣1024).故答案为:(1024,﹣1024).【命题点2函数及其自变量的取值范围】类型一常量与变量16.(2022•广东)水中涟漪(圆形水波)不断扩大,记它的半径为r,则圆周长C与r的关系式为C=2πr.下列判断正确的是()A.2是变量 B.π是变量 C.r是变量 D.C是常量【答案】C【解答】解:根据题意可得,在C=2πr中.2,π为常量,r是自变量,C是因变量.故选:C.类型二函数的关系式17.(2022•大连)汽车油箱中有汽油30L.如果不再加油,那么油箱中的油量y(单位:L)随行驶路程x(单位:km)的增加而减少,平均耗油量为0.1L/km.当0≤x≤300时,y与x的函数解析式是()A.y=0.1x B.y=﹣0.1x+30 C.y= D.y=﹣0.1x2+30x【答案】B【解答】解:由题意可得:y=30﹣0.1x,(0≤x≤300).故选:B.18.(2022•益阳)已知一个函数的因变量y与自变量x的几组对应值如表,则这个函数的表达式可以是()x…﹣1012…y…﹣2024…A.y=2x B.y=x﹣1 C.y= D.y=x2【答案】A【解答】解:根据表中数据可以看出:y的值是x值的2倍.∴y=2x.故选:A.类型三函数自变量的取值范围19.(2022•牡丹江)函数y=中,自变量x的取值范围是()A.x≤﹣2 B.x≥﹣2 C.x≤2 D.x≥2【答案】D【解答】解:由题意得:x﹣2≥0,∴x≥2,故选:D.20.(2022•恩施州)函数y=的自变量x的取值范围是()A.x≠3 B.x≥3 C.x≥﹣1且x≠3 D.x≥﹣1【答案】C【解答】解:由题意得:,解得:x≥﹣1且x≠3.故选:C.21.(2022•黄石)函数y=+的自变量x的取值范围是()A.x≠﹣3且x≠1 B.x>﹣3且x≠1 C.x>﹣3 D.x≥﹣3且x≠1【答案】B【解答】解:函数y=+的自变量x的取值范围是:x+3>0,且x﹣1≠0,解得:x>﹣3且x≠1.故选:B.32.(2022•哈尔滨)在函数y=中,自变量x的取值范围是.【答案】x≠﹣【解答】解:由题意得:5x+3≠0,∴x≠﹣,故答案为:x≠﹣类型四函数值的运算22.(2022•上海)已知f(x)=3x,则f(1)=.【答案】3【解答】解:因为f(x)=3x,所以f(1)=3×1=3,故答案为:3.23.(2022•相城区校级自主招生)我们引入记号f(x)表示某个函数,用f(a)表示x=a时的函数值.例如函数y=x2+1可以记为f(x)=x2+1,并有f(﹣2)=(﹣2)2+1=5,f(a+1)=(a+1)2+1=a2+2a+2.狄利克雷是德国著名数学家,是最早倡导严格化方法的数学家之一.狄利克雷函数f(x)=的出现表示数学家对数学的理解开始了深刻的变化,从研究“算”到研究更抽象的“概念、性质和结构”.关于狄利克雷函数,下列说法:①f(π)=f()②对于任意的实数a,f(f(a))=0③对于任意的实数b,f(b)=f(﹣b)④存在一个不等于0的常数t,使得对于任意的x都有f(x+t)=f(x)⑤对于任意两个实数m和n,都有f(m)+f(n)≥f(m+n).其中正确的有(填序号).【答案】①,③,④,【解答】解:f(π)=f()=0,故①符合题意;若a是有理数,则f(a)=1,f(f(a))=1,故②不符合题意;若b是有理数,则﹣b是有理数,若b是无理数,则﹣b是无理数,因此f(b)=f(﹣b),故③符合题意;令t=1,若x是有理数,则x+1是有理数,若x是无理数,则x+1是无理数,因此f(x+t)=f(x),故④符合题意;若m,n都是无理数,m+n=0,则f(m)+f(n)<f(m+n),故⑤不符号题意.故答案为:①,③,④.24.(2022•枣庄)已知y1和y2均是以x为自变量的函数,当x=n时,函数值分别是N1和N2,若存在实数n,使得N1+N2=1,则称函数y1和y2是“和谐函数”.则下列函数y1和y2不是“和谐函数”的是()A.y1=x2+2x和y2=﹣x+1 B.y1=和y2=x+1 C.y1=﹣和y2=﹣x﹣1 D.y1=x2+2x和y2=﹣x﹣1【答案】B【解答】解:A、令y1+y2=1,则x2+2x﹣x+1=1,整理得:x2+x=0,解得:x1=0,x2=﹣1,∴函数y1和y2是“和谐函数”,故A不符合题意;B、令y1+y2=1,则+x+1=1,整理得:x2+1=0,此方程无解,∴函数y1和y2不是“和谐函数”,故B符合题意;C、令y1+y2=1,则﹣﹣x﹣1=1,整理得:x2+2x+1=0,解得:x1=﹣1,x2=﹣1,∴函数y1和y2是“和谐函数”,故C不符合题意;D、令y1+y2=1,则x2+2x﹣x﹣1=1,整理得:x2+x﹣2=0,解得:x1=1,x2=﹣2,∴函数y1和y2是“和谐函数”,故D不符合题意;故选:B【命题点3分析、判断函数图像】类型一实际问题考向1行程问题25.(2022•巴中)甲、乙两人沿同一直道从A地到B地,在整个行程中,甲、乙离A地的距离S与时间t之间的函数关系如图所示,下列说法错误的是()A.甲比乙早1分钟出发 B.乙的速度是甲的速度的2倍 C.若甲比乙晚5分钟到达,则甲用时10分钟 D.若甲出发时的速度为原来的2倍,则甲比乙提前1分钟到达B地【答案】C【解答】解:A、由图象得,甲比乙早1分钟出发,选项正确,不符合题意;B、由图可得,甲乙在t=2时相遇,甲行驶的时间为2分钟,乙行驶的时间为1分钟,路程相同,∴乙的速度是甲的速度的2倍,选项正确,不符合题意;C、设乙用时x分钟到达,则甲用时(x+5+1)分钟,由B得,乙的速度是甲速度的2倍,∴乙用的时间是甲用的时间的一半,∴2x=x+5+1,解得:x=6,∴甲用时12分钟,选项错误,符合题意;D、若甲出发时的速度为原来的2倍,此时甲乙速度相同,∵甲比乙早1分钟出发,∴甲比乙提前1分钟到达B地,选项正确,不符合题意;故选:C.26.(2022•北碚区自主招生)小玲从山脚沿某上山步道“踏青”,匀速行走一段时间后到达山腰平台停下来休息一会儿,休息结束后她加快了速度,匀速直至到达山顶.设从她出发开始所经过的时间为t,她行走的路程为s,下面能反映s与t的函数关系的大致图象是()A. B. C. D.【答案】A【解答】解:根据题意,小玲步道“踏青”分为三个阶段,步行﹣停止﹣快行,反映到图象上是:三条线段为缓,平,陡.所以能反映s与t的函数关系的大致图象是选项A.故选:A.27.(2022•临沂)甲、乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y(单位:km)与时间x(单位:h)的对应关系如图所示,下列说法中不正确的是()A.甲车行驶到距A城240km处,被乙车追上 B.A城与B城的距离是300km C.乙车的平均速度是80km/h D.甲车比乙车早到B城【答案】D【解答】解:由题意可知,A城与B城的距离是300km,故选项B不合题意;甲车的平均速度是:300÷5=60(km/h),乙车的平均速度是:240÷(4﹣1)=80(km/h),故选项C不合题意;设乙车出发x小时后追上甲车,则60(x+1)=80x,解得x=3,60×4=240(km),即甲车行驶到距A城240km处,被乙车追上,故选项A不合题意;由题意可知,乙车比甲车早到B城,故选项D符合题意.故选:D.28.(2022•河北)某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m个人共同完成需n天,选取6组数对(m,n),在坐标系中进行描点,则正确的是()A. B. C. D.【答案】C【解答】解:∵一个人完成需12天,∴一人一天的工作量为,∵m个人共同完成需n天,∴一人一天的工作量为,∵每人每天完成的工作量相同,∴mn=12.∴n=,∴n是m的反比例函数,∴选取6组数对(m,n),在坐标系中进行描点,则正确的是:C.故选:C.29.(2022•温州)小聪某次从家出发去公园游玩的行程如图所示,他离家的路程为s米,所经过的时间为t分钟.下列选项中的图象,能近似刻画s与t之间关系的是()A. B. C. D.【答案】A【解答】解:由题意可知:小聪某次从家出发,s米表示他离家的路程,所以C,D错误;小聪在凉亭休息10分钟,所以A正确,B错误.故选:A.30.(2022•赤峰)已知王强家、体育场、学校在同一直线上,下面的图象反映的过程是:某天早晨,王强从家跑步去体育场锻炼,锻炼结束后,步行回家吃早餐,饭后骑自行车到学校.图中x表示时间,y表示王强离家的距离.则下列结论正确的是.(填写所有正确结论的序号)①体育场离王强家2.5km②王强在体育场锻炼了30min③王强吃早餐用了20min④王强骑自行车的平均速度是0.2km/min【答案】①③④【解答】解:由图象中的折线中的第一段可知:王强家距离体育场2.5千米,用时15分钟跑步到达,∴①的结论正确;由图象中的折线中的第二段可知:王强从第15分钟开始锻炼,第30分钟结束,∴王强锻炼的时间为:30﹣15=15(分钟),∴②的结论不正确;由图象中的折线中的第三段可知:王强从第30中开始回家,第67分钟到家;由图象中的折线中的第四段可知:王强从第67分钟开始吃早餐,第87分钟结束,∴王强吃早餐用时:87﹣67=20(分钟),∴③的结论正确;由图象中的折线中的第五段可知:王强从第87分钟开始骑车去往3千米外的学校,第102分钟到达学校,∴王强骑自行车用时为:102﹣87=15(分钟),∴王强骑自行车的平均速度是:3÷15=0.2(km/min)∴④的结论正确.综上,结论正确的有:①③④,故答案为:①③④.判断函数图像考向2其他问题31.(2022•河池)东东用仪器匀速向如图容器中注水,直到注满为止.用t表示注水时间,y表示水面的高度,下列图象适合表示y与t的对应关系的是()A. B. C. D.【答案】C【解答】解:因为底部的圆柱底面半径较大,所以刚开始水面上升比较慢,中间部分的圆柱底面半径较小,故水面上升较快,上部的圆柱的底面半径最小,所以水面上升最快,故适合表示y与t的对应关系的是选项C.故选:C.32.(2022•遵义)遵义市某天的气温y1(单位:℃)随时间t(单位:h)的变化如图所示,设y2表示0时到t时气温的值的极差(即0时到t时范围气温的最大值与最小值的差),则y2与t的函数图象大致是()A. B. C. D.【答案】A【解答】解:因为极差是该段时间内的最大值与最小值的差.所以当t从0到5时,极差逐渐增大;t从5到气温为20℃时,极差不变;当气温从20℃到28℃时极差达到最大值.直到24时都不变.只有A符合.故选:A.33.(2022•河南)呼气式酒精测试仪中装有酒精气体传感器,可用于检测驾驶员是否酒后驾车.酒精气体传感器是一种气敏电阻(图1中的R1),R1的阻值随呼气酒精浓度K的变化而变化(如图2),血液酒精浓度M与呼气酒精浓度K的关系见图3.下列说法不正确的是()A.呼气酒精浓度K越大,R1的阻值越小 B.当K=0时,R1的阻值为100Ω C.当K=10时,该驾驶员为非酒驾状态 D.当R1=20时,该驾驶员为醉驾状态【答案】C【解答】解:由图2可知,呼气酒精浓度K越大,R1的阻值越小,故A正确,不符合题意;由图2知,K=0时,R1的阻值为100,故B正确,不符合题意;由图3知,当K=10时,M=2200×10×10﹣3=22(mg/100mL),∴当K=10时,该驾驶员为酒驾状态,故C不正确,符合题意;由图2知,当R1=20时,K=40,∴M=2200×40×10﹣3=88(mg/100mL),∴该驾驶员为醉驾状态,故D正确,不符合题意;故选:C.34.(2022•武汉)匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线).这个容器的形状可能是()A. B. C. D.【答案】A【解答】解:注水量一定,函数图象的走势是平缓,稍陡,陡;即随着时间的变化,水面高度变化的快慢不同,与所给容器的底面积有关.则相应的排列顺序就为选项A.故选:A类型二几何图像中的动态问题考向1判断函数图像-动点问题35.(2022•锦州)如图,在Rt△ABC中,∠ABC=90°,AB=2BC=4,动点P从点A出发,以每秒1个单位长度的速度沿线段AB匀速运动,当点P运动到点B时,停止运动,过点P作PQ⊥AB交AC于点Q,将△APQ沿直线PQ折叠得到△A′PQ,设动点P的运动时间为t秒,△A′PQ与△ABC重叠部分的面积为S,则下列图象能大致反映S与t之间函数关系的是()A. B. C. D.【答案】D【解答】解:∵∠ABC=90°,AB=2BC=4,∴,由题意知:AP=t,∴,由折叠的性质可得:A'P=AP,∠APQ=∠A'PQ=90°,当点P与AB中点重合时,则有t=2,当点P在AB中点的左侧时,即0≤t<2,∴△A'PQ与△ABC重叠部分的面积为;当点P在AB中点及中点的右侧时,即2≤t≤4,如图所示:由折叠性质可得:A'P=AP=t,∠APQ=∠A'PQ=90°,,∴BP=4﹣t,∴A'B=2t﹣4,∴BD=A'B⋅tan∠A'=t﹣2,∴△A'PQ与△ABC重叠部分的面积为;综上所述:能反映△A'PQ与△ABC重叠部分的面积S与t之间函数关系的图象只有D选项;故选:D.36.(2022•菏泽)如图,等腰Rt△ABC与矩形DEFG在同一水平线上,AB=DE=2,DG=3,现将等腰Rt△ABC沿箭头所指方向水平平移,平移距离x是自点C到达DE之时开始计算,至AB离开GF为止.等腰Rt△ABC与矩形DEFG的重合部分面积记为y,则能大致反映y与x的函数关系的图象为()A. B. C. D.【答案】B【解答】解:如图,作CH⊥AB于点H,∵AB=2,△ABC是等腰直角三角形,∴CH=1,当0≤x≤1时,y=×2x•x=x2,当1<x≤3时,y==1,当3<x≤4时,y=1﹣=﹣(x﹣3)2+1,故选:B.37.(2022•铜仁市)如图,等边△ABC、等边△DEF的边长分别为3和2.开始时点A与点D重合,DE在AB上,DF在AC上,△DEF沿AB向右平移,当点D到达点B时停止.在此过程中,设△ABC、△DEF重合部分的面积为y,△DEF移动的距离为x,则y与x的函数图象大致为()A. B. C. D.【答案】C【解答】解:如图所示,当E和B重合时,AD=AB﹣DB=3﹣2=1,∴当△DEF移动的距离为0≤x≤1时,△DEF在△ABC内,y=S△DEF==,当E在B的右边时,如图所示,设移动过程中DF与CB交于点N,过点N作NM垂直于AE,垂足为M,根据题意得AD=x,AB=3,∴DB=AB﹣AD=3﹣x,∵∠NDB=60°,∠NBD=60°,∴△NDB是等边三角形,∴DN=DB=NB=3﹣x,∵NM⊥DB,∴,∵NM2+DM2=DN2,∴,∴,∴,∴当1≤x≤3时,y是一个关于x的二次函数,且开口向上,故选:C.38.(2022•衡阳)如图,在四边形ABCD中,∠B=90°,AC=6,AB∥CD,AC平分∠DAB.设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()A. B. C. D.【答案】D【解答】解:过D点作DE⊥AC于点E.∵AB∥CD,∴∠ACD=∠BAC,∵AC平分∠DAB,∴∠BAC=∠CAD,∴∠ACD=∠CAD,则CD=AD=y,即△ACD为等腰三角形,则DE垂直平分AC,∴AE=CE=AC=3,∠AED=90°,∵∠BAC=∠CAD,∠B=∠AED=90°,∴△ABC∽△AED,∴,∴,∴y=,∵在△ABC中,AB<AC,∴x<6,故选:D.考向2分析函数图像-动点问题39.(2022•齐齐哈尔)如图①所示(图中各角均为直角),动点P从点A出发,以每秒1个单位长度的速度沿A→B→C→D→E路线匀速运动,△AFP的面积y随点P运动的时间x(秒)之间的函数关系图象如图②所示,下列说法正确的是()A.AF=5 B.AB=4 C.DE=3 D.EF=8【答案】B【解答】解:由图②的第一段折线可知:点P经过4秒到达点B处,此时的三角形的面积为12,∵动点P从点A出发,以每秒1个单位长度的速度沿A→B→C→D→E路线匀速运动,∴AB=4.∵×AF•AB=12,∴AF=6,∴A选项不正确,B选项正确;由图②的第二段折线可知:点P再经过2秒到达点C处,∴BC=2,由图②的第三段折线可知:点P再经过6秒到达点D处,∴CD=6,由图②的第四段折线可知:点P再经过4秒到达点E处,∴DE=4.∴C选项不正确;∵图①中各角均为直角,∴EF=AB+CD=4+6=10,∴D选项的结论不正确,故选:B.40.(2022•鄂尔多斯)如图①,在正方形ABCD中,点M是AB的中点,点N是对角线BD上一动点,设DN=x,AN+MN=y,已知y与x之间的函数图象如图②所示,点E(a,2)是图象的最低点,那么a的值为()A. B.2 C. D.【答案】A【解答】解:如图,连接AC交BD于点O,连接NC,连接MC交BD于点N′.∵四边形ABCD是正方形,∴O是BD的中点,∵点M是AB的中点,∴N′是△ABC的重心,∴N′O=BO,∴N′D=BD,∵A、C关于BD对称,∴NA=NC,∴AN+MN=NC+MN,∵当M、N、C共线时,y的值最小,∴y的值最小就是MC的长,∴MC=2,设正方形的边长为m,则BM=m,在Rt△BCM中,由勾股定理得:MC2=BC2+MB2,∴20=m2+(m)2,∴m=4,∴BD=4,∴a=N′D=BD=×4=,故选:A.41.(2022•烟台)如图1,△ABC中,∠ABC=60°,D是BC边上的一个动点(不与点B,C重合),DE∥AB,交AC于点E,EF∥BC,交AB于点F.设BD的长为x,四边形BDEF的面积为y,y与x的函数图象是如图2所示的一段抛物线,其顶点P的坐标为(2,3),则AB的长为.【答案】2【解答】解:∵抛物线的顶点为(2,3),过点(0,0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论