2024年七台河市重点中学九上数学开学学业水平测试试题【含答案】_第1页
2024年七台河市重点中学九上数学开学学业水平测试试题【含答案】_第2页
2024年七台河市重点中学九上数学开学学业水平测试试题【含答案】_第3页
2024年七台河市重点中学九上数学开学学业水平测试试题【含答案】_第4页
2024年七台河市重点中学九上数学开学学业水平测试试题【含答案】_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共6页2024年七台河市重点中学九上数学开学学业水平测试试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)已知菱形ABCD的面积是120,对角线AC=24,则菱形ABCD的周长是()A.52 B.40 C.39 D.262、(4分)用反证法证明:“直角三角形至少有一个锐角不小于45°”时,应先假设()A.直角三角形的每个锐角都小于45°B.直角三角形有一个锐角大于45°C.直角三角形的每个锐角都大于45°D.直角三角形有一个锐角小于45°3、(4分)菱形的对角线不一定具有的性质是()A.互相平分 B.互相垂直 C.每一条对角线平分一组对角 D.相等4、(4分)下列变形错误的是()A. B.C. D.5、(4分)已知直线y=kx+b,k>0,b>0,则下列说法中正确的是()A.这条直线与x轴交点在正半轴上,与y轴交点在正半轴上B.这条直线与x轴交点在正半轴上,与y轴交点在负半轴上C.这条直线与x轴交点在负半轴上,与y轴交点在正半轴上D.这条直线与x轴交点在负半轴上,与y轴交点在负半轴上6、(4分)如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=2,则AC的长是()A.2 B.4 C. D.7、(4分)如图所示,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,且AB=8,MN=3,则AC的长是()A.12 B.14 C.16 D.188、(4分)如图,在Rt△ABC中,∠ACB=90°,BD平分∠ABC.若CD=3,BC+AB=16,则△ABC的面积为()A.16 B.18 C.24 D.32二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)在中,若∠A=38°,则∠C=____________10、(4分)已知x+y=0.2,2x+3y=2.2,则x2+4xy+4y2=_____.11、(4分)如图,在中,点在上,请再添加一个适当的条件,使与相似,那么要添加的条件是__________.(只填一个即可)12、(4分)当x______时,分式有意义.13、(4分)如图,反比例函数与正比例函数和的图像分别交于点A(2,2)和B(b,3),则关于x的不等式组的解集为___________。三、解答题(本大题共5个小题,共48分)14、(12分)某商场购进一批运动服,销售时标价为每件100元,若按七折销售则可获利40%.为尽快减少库存,现该商场决定对这批运动服开展降价促销活动,每件在七折的基础上再降价x元后,现在每天可销售(4x+10)件.(1)运动服的进价是每件______元;(2)促销期间,每天若要获得500元的利润,则x的值为多少?15、(8分)如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1、BC1分别交于点E.F.(1)求证:△BCF≌△BA1D.(2)当∠C=α度时,判定四边形A1BCE的形状并说明理由.16、(8分)(1)化简;(m+2+)•(2)先化简,再求值;(+x+2)÷,其中|x|=217、(10分)如图,在平面直角坐标系中,直线与双曲线交于第一、三象限内的、两点,与轴交于点,过点作轴,垂足为,,,点的纵坐标为1.(1)求反比例函数和一次函数的函数表达式;(2)连接,求四边形的面积;(3)在(1)的条件下,根据图像直接写出反比例函数的值小于一次函数的值时,自变量的取值范围.18、(10分)已知,一次函数的图象与x轴、y轴分别交于点A和B.求A,B两点的坐标,并在如图的坐标系中画出函数的图象;若点C在第一象限,点D在x轴的正半轴上,且四边形ABCD是菱形,直接写出C,D两点的坐标.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,正方形OMNP的一个顶点与正方形ABCD的对角线交点O重合,且正方形ABCD、OMNP的边长都是4cm,则图中重合部分的面积是_____cm1.20、(4分)如图,已知等边△ABC的边长为10,P是△ABC内一点,PD平行AC,PE平行AD,PF平行BC,点D,E,F分别在AB,BC,AC上,则PD+PE+PF=_______________.21、(4分)甲,乙,丙,丁四人参加射击测试,每人次射击的平均环数都为环,各自的方差见如下表格:甲乙丙丁方差则四个人中成绩最稳定的是______.22、(4分)如图,正方形ABCD的面积为,则图中阴影部分的面积为______________.23、(4分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,BD⊥AD,AD=6,AB=10,则△AOB的面积为_________________二、解答题(本大题共3个小题,共30分)24、(8分)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.25、(10分)某水厂为了了解小区居民的用水情况,随机抽查了小区10户家庭的月用水量,结果如下表:月用水量()1013141718户数22321如果小区有500户家庭,请你估计小区居民每月(按30天计算)共用水多少立方米?(答案用科学记数法表示)26、(12分)实践与探究宽与长的比是(约0.618)的矩形叫做黄金矩形。黄金矩形给我们以协调、均匀的美感。世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计。下面我们通过折纸得到黄金矩形。第一步,在一张矩形纸片的一端,利用图1的方法折出一个正方形,然后把纸片展平。第二步,如图2,把这个正方形折成两个相等的矩形,再把纸片展平,折痕是。第三步,折出内侧矩形的对角线,并把折到图3中所示的处,折痕为。第四步,展平纸片,按照所得的点折出,使;过点折出折痕,使。(1)上述第三步将折到处后,得到一个四边形,请判断四边形的形状,并说明理由。(2)上述第四步折出折痕后得到一个四边形,这个四边形是黄金矩形,请你说明理由。(提示:设的长度为2)(3)在图4中,再找出一个黄金矩形_______________________________(黄金矩形除外,直接写出答案,不需证明,可能参考数值:)(4)请你举一个采用了黄金矩形设计的世界名建筑_________________________.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】

先利用菱形的面积公式计算出BD=10,然后根据菱形的性质和勾股定理可计算出菱形的边长=13,从而得到菱形的周长.【详解】∵菱形ABCD的面积是120,即×AC×BD=120,∴BD==10,∴菱形的边长==13,∴菱形ABCD的周长=4×13=1.故选A.本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形的面积计算可利用平行四边形的面积公式计算,也可利用菱形面积=ab(a、b是两条对角线的长度)进行计算.2、A【解析】分析:找出原命题的方面即可得出假设的条件.详解:有一个锐角不小于45°的反面就是:每个锐角都小于45°,故选A.点睛:本题主要考查的是反证法,属于基础题型.找到原命题的反面是解决这个问题的关键.3、D【解析】

根据菱形的对角线性质,即可得出答案.【详解】解:∵菱形的对角线互相垂直平分,且每一条对角线平分一组对角,

∴菱形的对角线不一定具有的性质是相等;

故选:D.此题主要考查了菱形的对角线性质,熟记菱形的对角线互相垂直平分,且每一条对角线平分一组对角是解题的关键.4、D【解析】试题解析:A选项分子和分母同时除以最大公因式;B选项的分子和分母互为相反数;C选项分子和分母同时除以最大公因式,D选项正确的变形是所以答案是D选项故选D.5、C【解析】

先确定直线y=kx+b经过第一、二、三限,即可对各选项进行判断.【详解】解:∵直线y=kx+b,k>0,b>0,∴直线y=kx+b经过第一、二、三象限,故选:C.本题考查了一次函数与系数的关系:对于一次函数y=kx+b,它与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.当k>0,b>0⇔y=kx+b的图象在一、二、三象限;k>0,b<0⇔y=kx+b的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.6、B【解析】

解:在矩形ABCD中,OA=OC,OB=OD,AC=BD,∴OA=OC.∵∠AOD=60°,∴△OAB是等边三角形.∴OA=AD=1.∴AC=1OA=1×1=2.故选B.7、B【解析】

延长BN交AC于D,证明△ANB≌△AND,根据全等三角形的性质、三角形中位线定理计算即可.【详解】延长BN交AC于D,在△ANB和△AND中,,∴△ANB≌△AND,∴AD=AB=8,BN=ND,∵M是△ABC的边BC的中点,∴DC=2MN=6,∴AC=AD+CD=14,故选B.本题考查的是三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.8、C【解析】

过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,再根据S△ABC=S△BCD+S△ABD列式计算即可得解.【详解】如图,过点D作DE⊥AB于E,∵∠ACB=90°,BD平分∠ABC,∴DE=CD=3,∴S△ABC=S△BCD+S△ABD=BC⋅CD+AB⋅DE=(BC+AB)×3∵BC+AB=16,∴△ABC的面积=×16×3=24.故选C.本题考查角平分线的性质定理,作辅助线是解题关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、38°【解析】

根据平行四边形对角相等即可求解.【详解】解:∵平行四边形ABCD中,∠A=38°,∴∠C=∠A=38°,故答案为:38°.本题考查了平行四边形的性质,要知道平行四边形对角相等.10、4【解析】

因为x2+4xy+4y2=(x+2y)²,只要求出x+2y即可,因为2x+3y=2.2减去x+y=0.2,刚好得到x+2y=2,所以结果为4,当然后你也可以用解二元一次方程组求出x,y然后再求代数x2+4xy+4y2的值【详解】解:用方程+3y=2.2减去方程x+y=0.2,得x+2y=2,故x2+4xy+4y2=(x+2y)²=4本题利用了整式的乘法解决的,还可以用解一元二次方程的方法求解。11、或【解析】

已知与的公共角相等,根据两角对应相等的两个三角形相似再添加一组对应角相等即可.【详解】解:(公共角)(或)(两角对应相等的两个三角形相似)故答案为:或本题考查了相似三角形的判定,熟练掌握相似三角形的判定定理是解题的关键.12、≠【解析】试题分析:分式有意义的条件:分式的分母不为0时,分式才有意义.由题意得,.考点:分式有意义的条件点评:本题属于基础应用题,只需学生熟练掌握分式有意义的条件,即可完成.13、【解析】

把点A(2,2)代入得k=4得到。可求B()由函数图像可知的解集是:【详解】解:把点A(2,2)代入得:∴k=4∴当y=3时∴∴B()由函数图像可知的解集是:本题考查了反比例函数和一次函数的交点问题,掌握求反比例函数解析式,及点的坐标,以及由函数求出不等式的解集.三、解答题(本大题共5个小题,共48分)14、(1)52;(2)x的值为3.5或1.【解析】

(1)设进价为a元,根据“销售时标价为每件12元,若按七折销售则可获利42%.”列出方程,求出方程的解即可得到结果;(2)根据“现该商场决定对这批运动服开展降价促销活动,每件在七折的基础上再降价x元后,现在每天可销售(4x+1)件列出方程”,列出利润522=(32-x-52)(4x+1),求出方程的解即可得到结果.【详解】解:(1)设进价为a元,根据题意得:(1+42%)a=12×2.3,解得:a=52,则运动服的进价是每件52元;故答案为:52;(2)根据题意得:(32-x-52)(4x+1)=522,(22-x)(2x+5)=252,即2x2-35x+152=2,分解因式得:(2x-15)(x-1)=2,解得:x=3.5或x=1,则x的值为3.5或1.此题考查一元二次方程的应用,弄清题意再根据题意列出方程是解题的关键.15、(1)证明见解析(2)四边形A1BCE是菱形【解析】

(1)根据等腰三角形的性质得到AB=BC,∠A=∠C,由旋转的性质得到A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,根据全等三角形的判定定理得到△BCF≌△BA1D;(2)由旋转的性质得到∠A1=∠A,根据平角的定义得到∠DEC=180°﹣α,根据四边形的内角和得到∠A1BC=360°﹣∠A1﹣∠C﹣∠A1EC=180°﹣α,证得四边形A1BCE是平行四边形,由于A1B=BC,即可得到四边形A1BCE是菱形.【详解】(1)证明:∵△ABC是等腰三角形,∴AB=BC,∠A=∠C,∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,∴A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,在△BCF与△BA1D中,,∴△BCF≌△BA1D;(2)解:四边形A1BCE是菱形,∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1BC1的位置,∴∠A1=∠A,∵∠ADE=∠A1DB,∴∠AED=∠A1BD=α,∴∠DEC=180°﹣α,∵∠C=α,∴∠A1=α,∴∠A1BC=360°﹣∠A1﹣∠C﹣∠A1EC=180°﹣α,∴∠A1=∠C,∠A1BC=∠A1EC,∴四边形A1BCE是平行四边形,∴A1B=BC,∴四边形A1BCE是菱形.考点:旋转的性质;全等三角形的判定与性质;等腰三角形的性质.16、(1)m+1;(2)1【解析】

(1)先对括号里面的式子进行合并,再利用完全平方公式进行计算即可解答.(2)先合并括号里面的,再把除法变成乘法,约分合并,最后把|x|=2,代入即可.【详解】解:(1)原式==m+1;(2)原式=,由|x|=2,得到x=2或﹣2(舍去),当x=2时,原式=1.此题考查分式的化简求值,解题关键在于掌握运算法则.17、(1)反比例函数解析式为;一次函数解析式为;(2)1;(3)或.【解析】

(1)根据BM⊥轴,可知△BMO为等腰直角三角形,可求得点B的坐标,将其代入反比例函数,求出,即可知反比例函数解析式,已知点A的纵坐标,代入求得的反比例函数解析式,可求得点A的横坐标,再利用待定系数法,即可求得一次函数解析式;(2)一次函数与y轴交于点C,可求得C的坐标,易证四边形MBOC是平行四边形,OM即为高,四边形的面积即可求解;(3)要使反比例函数的值小于一次函数的值,反比例函数图像一定在一次函数图像的下方,观察图像,即可求解自变量的取值范围.【详解】解:(1)∵BM⊥轴,且BM=OM,∴△BMO为等腰直角三角形,∵OB=,∴BM=OM=2,∴点B的坐标为(-2,-2),∵点B在双曲线上,代入,可求得,故反比例函数的解析式为,∵点A也是反比例函数上的点,且A点的纵坐标为1,代入,求得A点坐标为(1,1),∵点A、B也是直线上的点,∴,解得.故一次函数的解析式为.(2)∵一次函数与轴交于点C,将代入解析式,可求得C点的坐标为(0,2)∴BM=OC,又∵BM//OC,∴四边形MBOC是平行四边形,OM即为平行四边形MBOC的高,∴四边形MBOC的面积,故四边形MBOC的面积为1.(3)根据图像观察可知,要使反比例函数的值小于一次函数的值时,反比例函数图像一定在一次函数图像的下方,包括A(1,1)的右侧,以及B(-2,-2)到轴这两部分,从而可知,自变量的取值范围是:或.故答案为:或.本题目考查函数的综合,难度一般,涉及知识点有反比例函数、一次函数,待定系数法等,熟练掌握两种函数的性质是顺利解题的关键.18、(1)A,B,画图见解析;(2),.【解析】

(1)先求出A,B两点的坐标,再画函数图象;(2)根据图形,结合勾股定理和菱形性质推出边长,得到C.D的坐标.【详解】解:将代入,可得;

将,代入,可得;

点A的坐标为,点B的坐标为,

如图所示,直线AB即为所求;

由点A的坐标为,点B的坐标为,可得,,中,,四边形ABCD是菱形,,,,.本题考核知识点:一次函数与菱形.解题关键点:熟记菱形的判定与性质.一、填空题(本大题共5个小题,每小题4分,共20分)19、2.【解析】

根据题意可得:△AOG≌△DOF(ASA),所以S四边形OFDG=S△AOD=S

正方形ABCD,从而可求得其面积.【详解】解:如图,∵正方形ABCD和正方形OMNP的边长都是2cm,

∴OA=OD,∠AOD=∠POM=90°,∠OAG=∠ODF=25°,∴∠AOG=∠DOF,

在△AOG和△DOF中,

∵,

∴△AOG≌△DOF(ASA),

∴S四边形OFDG=S△AOD=S

正方形ABCD=×=2;

则图中重叠部分的面积是2cm1,

故答案为:2.本题考查正方形的性质,题中重合的部分的面积是不变的,且总是等于正方形ABCD面积的.20、1【解析】

延长EP、FP分别交AB、BC于G、H,则由PD∥AB,PE∥BC,PF∥AC,可得平行四边形PGBD和平行四边形EPHC,再根据平行四边形及等边三角形的性质得到PD=DH,PE=HC,PF=BD,故可求出PD+PE+PF的长.【详解】如图,延长EP、FP分别交AB、BC于G、H,由PD∥AB,PE∥BC,PF∥AC,可得平行四边形PGBD和平行四边形EPHC,∴PG=BD,PE=HC又∵△ABC是等边三角形,且PF∥AC,PD∥AB,可得△PFG,△PDH是等边三角形,∴PF=PG=BD,PD=DH∴PD+PE+PF=DH+GP+HC=DH+BD+HC=BC=1故答案为:1.此题主要考查平行四边形的判定与性质,解题的关键是熟知平行四边形的性质及等边三角形的判定与性质.21、甲【解析】

根据方差的意义:方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定可得答案.【详解】解:,四个人中成绩最稳定的是甲.故答案为:甲.此题主要考查了方差,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.22、【解析】试题分析:根据正方形的对称性,可知阴影部分的面积为正方形面积的一半,因此可知阴影部分的面积为.23、12【解析】∵BD⊥AD,AD=6,AB=10,,∴.∵四边形ABCD是平行四边形,二、解答题(本大

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论