版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共4页2024年辽宁营口大石桥市水源镇九一贯制学校数学九上开学统考试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列说法正确的是()A.一个游戏中奖的概率是,则做100次这样的游戏一定会中奖B.为了了解全国中学生的心理健康状况,应采用普查的方式C.一组数据0,1,2,1,1的众数和中位数都是1D.若甲组数据的方差为,乙组数据的方差为,则乙组数据比甲组数据稳定2、(4分)下列代数式变形正确的是()A.x-yx2C.1xy÷(3、(4分)如图,已知函数y=ax+b和y=kx的图像交于点P,则根据图像可得关于x,y的二元一次方程组的解是()A. B. C. D.4、(4分)如图中,点为边上一点,点在上,过点作交于点,过点作交于,下列结论错误的是()A. B. C. D.5、(4分)下列图形中既是轴对称图形又是中心对称图形的是()A.等腰三角形 B.平行四边形 C.正五边形 D.正十边形6、(4分)关于2、6、1、10、6的这组数据,下列说法正确的是()A.这组数据的众数是6 B.这组数据的中位数是1C.这组数据的平均数是6 D.这组数据的方差是107、(4分)正比例函数y=kx(k≠0)的图象经过第二、四象限,则一次函数y=x+k的图象大致是()A. B. C. D.8、(4分)下列调查中,最适合采用抽样调查的是()A.对某地区现有的16名百岁以上老人睡眠时间的调查B.对“神舟十一号”运载火箭发射前零部件质量情况的调查C.对某校九年级三班学生视力情况的调查D.对某市场上某一品牌电脑使用寿命的调查二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,正方形ABCD中,点E是对角线BD上的一点,BE=BC,过点E作EF⊥AB,EG⊥BC,垂足分别为点F,G,则正方形FBGE与正方形ABCD的相似比为_____.10、(4分)用反证法证明“若,则”时,应假设________.11、(4分)一次函数图象过点日与直线平行,则一次函数解析式__________.12、(4分)在四边形中,给出下列条件:①②③④其中能判定四边形是平行四边形的组合是________或________或_________或_________.13、(4分)已知一组数据6、4、a、3、2的平均数是5,则a的值为_____.三、解答题(本大题共5个小题,共48分)14、(12分)如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.15、(8分)某市举行知识大赛,A校、B校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.根据图示填写下表:平均数分中位数分众数分A校______85______B校85______100结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.16、(8分)解分式方程:+1.17、(10分)某校开展“爱我汕头,创文同行”的活动,倡议学生利用双休日参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息解答下列问题:(1)抽查的学生劳动时间为1.5小时”的人数为人,并将条形统计图补充完整.(2)抽查的学生劳动时间的众数为小时,中位数为小时.(3)已知全校学生人数为1200人,请你估算该校学生参加义务劳动1小时的有多少人?18、(10分)疫情发生后,口罩成了人们生活的必需品.某药店销售A,B两种口罩,今年3月份的进价如下表:(1)已知B种口罩每包售价比A种口罩贵20元,用64元购买到A种口罩的数量和144元购买到B种口罩的数量相同,求A种口罩和B种口罩每包售价.(2)为满足不同顾客的需求,该药店准备4月份新增购进进价为每包10元的C种口罩,A种和B种口罩仍按需购进,进价与3月份相同,A种口罩的数量是B种口罩的5倍,共花费12000元,则该店至少可以购进三种口罩共多少包?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)在植树节当天,某校一个班同学分成10个小组参加植树造林活动,10个小组植树的株数见下表:植树株数(株)
5
6
7
小组个数
3
4
3
则这10个小组植树株数的方差是_____.20、(4分)若在实数范围内有意义,则的取值范围为_________________.21、(4分)若x+y﹣1=0,则x2+xy+y2﹣2=_____.22、(4分)已知+=0,则(a﹣b)2的平方根是_____.23、(4分)已知函数y=(k-1)x|k|是正比例函数,则k=________二、解答题(本大题共3个小题,共30分)24、(8分)如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是8cm.求:(1)两条对角线的长度;(2)菱形的面积.25、(10分)2019年4月25日至27日,第二届“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议。我国准备将地的茶叶1000吨和地的茶叶500吨销往“一带一路”沿线的地和地,地和地对茶叶需求分别为900吨和600吨,已知从、两地运茶叶到、两地的运费(元/吨)如下表所示,设地运到地的茶叶为吨,35403045(1)用含的代数式填空:地运往地的茶叶吨数为___________,地运往地的茶叶吨数为___________,地运往地的茶叶吨数为___________.(2)用含(吨)的代数式表示总运费(元),并直接写出自变量的取值范围;(3)求最低总运费,并说明总运费最低时的运送方案.26、(12分)现代互联网技术的广泛应用,催生了快递行业的高速发展,小明计划给朋友快递一部分物品,经了解有甲乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费,乙公司表示:按每千克16元收费,另加包装费3元,设小明快递物品x千克.(1)根据题意,填写下表:快递物品重量(千克)0.5134…甲公司收费(元)22…乙公司收费(元)115167…(2)设甲快递公司收费y1元,乙快递公司收费y2元,分别写出y1,y2关于x的函数关系式;(3)当x>3时,小明应选择哪家快递公司更省钱?请说明理由.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
根据调查方式,可判断A,根据概率的意义一,可判断B根据中位数、众数,可判断c,根据方差的性质,可判断D.【详解】A、一个游戏中奖的概率是,做100次这样的游戏有可能中奖,而不是一定中奖,故A错误;
B、为了了解全国中学生的心理健康状况,应采用抽查方式,故B错误;
C、一组数据0,1,2,1,1的众数和中位数都是1,故C正确;
D.若甲组数据的方差为,乙组数据的方差为,无法比较甲乙两组的方差,故无法确定那组数据更加稳定,故D错误.故选:C.本题考查了概率、抽样调查及普查、中位数及众数、方差等,熟练的掌握各知识点的概念及计算方法是关键.2、D【解析】
利用分式的基本性质对四个选项一一进行恒等变形,即可得出正确答案.【详解】解:A.x-yxB.-x+y2=-C.1xyD.x-yx+y故选D.本题考查了分式的基本性质.熟练应用分式的基本性质对分式进行约分和通分是解题的关键.3、B【解析】函数y=ax+b和y=kx的图象交于点P(−4,−2),即x=−4,y=−2同时满足两个一次函数的解析式。所以关于x,y的方程组的解是:x=-4,y=-2.故选B.点睛:由图可知:两个一次函数的交点坐标为(-4,-2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.4、A【解析】
根据三角形的平行线定理:平行于三角形一边的直线截其他两边所在的直线,截得的三角形的三边与原三角形的三边对应成比例,即可得解.【详解】根据三角形的平行线定理,可得A选项,,错误;B选项,,正确;C选项,,正确;D选项,,正确;故答案为A.此题主要考查三角形的平行线定理,熟练掌握,即可解题.5、D【解析】
根据轴对称图形和中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形.故错误;
B、不是轴对称图形,是中心对称图形.故错误;
C、是轴对称图形,不是中心对称图形.故错误;
D、是轴对称图形,也是中心对称图形.故正确.故选:D.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.6、A【解析】
根据方差、算术平均数、中位数、众数的概念进行分析.【详解】数据由小到大排列为1,2,6,6,10,它的平均数为(1+2+6+6+10)=5,数据的中位数为6,众数为6,数据的方差=[(1﹣5)2+(2﹣5)2+(6﹣5)2+(6﹣5)2+(10﹣5)2]=10.1.故选A.考点:方差;算术平均数;中位数;众数.7、B【解析】∵正比例函数y=kx(k≠0)的图像经过第二、四象限,∴k<0,∴一次函数y=x+k的图像与y轴交于负半轴,且经过第一、三象限.故选B.8、D【解析】试题分析:A.人数不多,容易调查,适合普查.B.对“神舟十一号”运载火箭发射前零部件质量情况的调查必须准确,故必须普查;C.班内的同学人数不多,很容易调查,因而采用普查合适;D.数量较大,适合抽样调查;故选D.考点:全面调查与抽样调查.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】
设BG=x,则BE=x,即BC=x,则正方形FBGE与正方形ABCD的相似比=BG:BC=x:x=:2.【详解】设BG=x,则BE=x,∵BE=BC,∴BC=x,则正方形FBGE与正方形ABCD的相似比=BG:BC=x:x=:2.故答案为:.本题主要考查正方形的性质,图形相似的的性质.解此题的关键在于根据正方形的性质得到相关边长的比.10、【解析】
了解反证法证明的方法和步骤,反证法的步骤中,首先假设某命题不成立(即在原命题的条件下,结论不成立),然后推理出明显矛盾的结果,从而下结论说原假设成立.【详解】反面是.因此用反证法证明“若|a|<2,那么时,应先假设.故答案为:本题考查命题,解题关键在于根据反证法定义即可求得答案.11、【解析】
设一次函数解析式为y=kx+b,先把(0,-1)代入得b=-1,再利用两直线平行的问题得到k=-3,即可得到一次函数解析式.【详解】解:设一次函数解析式为y=kx+b,
把(0,-1)代入得b=-1,
∵直线y=kx+b与直线y=1-3x平行,
∴k=-3,
∴一次函数解析式为y=-3x-1.
故答案为:y=-3x-1.本题考查两直线相交或平行的问题:若两条直线是平行的关系,那么它们的自变量系数相同,即k值相同.12、①③①④②④③④【解析】
根据平行四边形的判定定理确定即可.【详解】解:如图,①③:,,四边形是平行四边形(两组对边分别平行的四边形是平行四边形);①④:,,四边形是平行四边形(两组对边分别平行的四边形是平行四边形);②④:,,四边形是平行四边形(一组对边平行且相等的四边形是平行四边形);③④:,四边形是平行四边形(两组对边分别平行的四边形是平行四边形);所以能判定四边形是平行四边形的组合是①③或①④或②④或③④.故答案为:①③或①④或②④或③④.本题考查了平行四边形的判定定理,一组对边平行且相等的四边形是平行四边形;两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形,灵活选用条件及合适的判定定理是解题的关键.13、1.【解析】
根据平均数的定义列出方程,解方程可得.【详解】∵数据6、4、a、3、2的平均数是5,∴,解得:a=1,故答案为:1.本题主要考查算术平均数的计算,熟练掌握算术平均数的定义是解题的关键.三、解答题(本大题共5个小题,共48分)14、见解析【解析】
分析:证明:∵∠BAD=∠CAE,∴∠BAE=∠CAD.在△ABE和△ACD中,∵AB=AC,AE=AD,∠BAE=∠CAD,∴△ABE≌△ACD(SAS).∴BE=CD.又∵DE=BC,∴四边形BCDE为平行四边形.如图,连接BD,CE,在△ACE和△ABD中,∵AC=AB,AE=AD,∠CAE=∠BAD,∴△ACE≌△ABD(SAS),∴CE=BD.∴四边形BCED为矩形(对角线相等的平行四边形是矩形).15、;85;1.(2)A校成绩好些.校的方差,B校的方差.A校代表队选手成绩较为稳定.【解析】
(1)根据平均数、众数、中位数的意见,并结合图表即可得出答案(2)根据平均数和中位数的意见,进行对比即可得出结论(3)根据方差的公式,代入数进行运算即可得出结论【详解】解:;85;1.A校平均数=分A校的成绩:75.1.85.85.100,众数为85分B校的成绩:70.75.1.100.100,中位数为1分校成绩好些.因为两个队的平均数都相同,A校的中位数高,所以在平均数相同的情况下中位数高的A校成绩好些.校的方差,B校的方差.,因此,A校代表队选手成绩较为稳定.本题主要考查了平均数、众数、中位数、方差的意义,要注意找中位数要把数据从小到大进行排序,位于最中间的数或者两个数的平均数为中位数,以及注意众数可能不止一个是解题的关键16、x=.【解析】
按照解分式方程的步骤解方程即可.【详解】解:方程两边都乘以得:解得:检验:当时,2(x﹣1)≠0,所以是原方程的解,即原方程的解为.本题考查分式方程注意检验.17、(1)40,补图见解析;(2)1.5、1.5;(3)估算该校学生参加义务劳动1小时的有400人.【解析】
(1)根据统计图,先求出总数,再算出劳动时间为1.5小时的人数;(2)根据中位数和众数的定义分析即可;(3)用样本估计总体.【详解】(1)40(2)1.5,1.5(3)1200×30%=400,答:估算该校学生参加义务劳动1小时的有400人。本题考核知识点:数据的描述.解题关键点:理解统计的基本定义,从统计图获取信息.18、(1)种口罩每包售价16元,种口罩每包售价36元;(2)822包【解析】
(1)设种口罩每包售价元,则种口罩每包售价元,根据等量关系:用64元购买到A种口罩的数量和144元购买到B种口罩的数量相同,列出方程并解方程即可.(2)设种口罩买包,种口罩买包,则种口罩买包,根据等量关系:三种口罩共花费12000元,得到,进而得出总数量关于n的函数关系式,根据一次函数的最值求解即可.【详解】解:(1)设种口罩每包售价元,则种口罩每包售价元,依题意,得:解得:经检验:是原方程的解∴,∴(元)答:种口罩每包售价16元,种口罩每包售价36元(2)设种口罩买包,种口罩买包,则种口罩买包则∵是5的倍数,∴总数量为∵,∴取最大值时,值最小又∵∴当时,总口罩最少为(包)∴该店至少可以购买进三种口罩共822包.本题考查分式方程的实际应用及一次函数的实际应用,准确找到等量关系列出分式方程及一次函数解析式是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、0.1.【解析】
求出平均数,再利用方差计算公式求出即可:根据表格得,平均数=(5×3+1×4+7×3)÷10=1.∴方差=.【详解】请在此输入详解!20、【解析】
根据根式有意义的条件,得到不等式,解出不等式即可【详解】要使有意义,则需要,解出得到本题考查根式有意义的条件,能够得到不等式是解题关键21、【解析】将变形为,然后把已知条件变形后代入进行计算即可.解:原式=,把x+y-1变形为x+y=1代入,得原式=.“点睛”本题考查了代数式求值,正确的进行代数式的变形是解题的关键.22、±1.【解析】
根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【详解】根据题意得a-1=2,且b-5=2,解得:a=1,b=5,则(a-b)2=16,则平方根是:±1.故答案是:±1.本题考查了非负数的性质:几个非负数的和为2时,这几个非负数都为2.23、-1【解析】试题解析:∵根据正比例函数的定义,可得:k-1≠0,|k|=1,∴k=-1.二、解答题(本大题共3个小题,共30分)24、(1)AC=2cm,BD=2cm;(2)2cm2【解析】
(1)由在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是8cm,可求得△ABO是含30°角的直角三角形,AB=2cm,继而求得AC与BD的长;
(2)由菱形的面积等于其对角线积的一半,即可求得答案.【详解】(1)∵四边形ABCD是菱形,∴AB=BC,AC⊥BD,AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC与∠BAD的度数比为1:2,∴∠ABC=×180°=60°,∴∠ABO=∠ABC=30°,∵菱形ABCD的周长是8cm.∴AB=2cm,∴OA=AB=1cm∴∴AC=2OA=2cm,BD=2OB=2cm;(2)S菱形ABCD=(cm2).此题考查了菱形的性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.25、(1),,;(2);(3)由地运往地400吨,运往地600吨;由地运往地500吨时运费最低【解析】
(1)从A地运往C地x吨,A地有1000吨,所以只能运往D地(1000-x)吨;C地需要900吨,那么B地运往C地(900-x),D地需要600吨,那么运往D(x-400)吨;(2)根据总运费=A地运往C地运费+A地运往D地运费+B地运往C地运费+B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑施工合同台账模板
- 烟酒店合伙协议合同范本图片
- 挖掘机买卖合同
- 濒危动物保护研究性学习报告课件
- 简易劳动合同书范本
- 基于2024年度市场推广协议的广告投放3篇
- 危险品运输合同模板
- 名义夫妻协议书范本
- 合伙经营合同协议书范本
- 人教版初中化学教学课件教学课件教学
- 原料药主要工艺设备(釜、固液分离、真空泵、干燥)
- 骨痹(骨关节病)中医护理效果评价表
- 四年级上册心理健康教案-9《我爱我的同学》 北师大版
- 抗病毒治疗依从性教育培训会
- 《建设工程监理合同(示范文本)》(GF-2012-0202)
- 《美丽的小兴安岭》学情分析方案
- 轻度损伤的自我处理课件讲义
- 低压电工作业(复审)模拟考试题及答案
- 通信工程投标专家继续教育题库(附答案)
- 直播带货-直播控场-带货直播间如何控场
- 【幼儿区域活动环境创设中存在的问题及其对策开题报告文献综述(含提纲)3000字】
评论
0/150
提交评论